Last updated: 2024-02-06

Checks: 7 0

Knit directory: Cardiotoxicity/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230109) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 5a1f2a6. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/variance_values by gene.png
    Ignored:    data/41588_2018_171_MOESM3_ESMeQTL_ST2_for paper.csv
    Ignored:    data/Arr_GWAS.txt
    Ignored:    data/Arr_geneset.RDS
    Ignored:    data/BC_cell_lines.csv
    Ignored:    data/BurridgeDOXTOX.RDS
    Ignored:    data/CADGWASgene_table.csv
    Ignored:    data/CAD_geneset.RDS
    Ignored:    data/CALIMA_Data/
    Ignored:    data/CMD04_75DRCviability.csv
    Ignored:    data/CMD04_87DRCviability.csv
    Ignored:    data/CMD05_75DRCviability.csv
    Ignored:    data/CMD05_87DRCviability.csv
    Ignored:    data/Clamp_Summary.csv
    Ignored:    data/Cormotif_24_k1-5_raw.RDS
    Ignored:    data/Counts_RNA_ERMatthews.txt
    Ignored:    data/DAgostres24.RDS
    Ignored:    data/DAtable1.csv
    Ignored:    data/DDEMresp_list.csv
    Ignored:    data/DDE_reQTL.txt
    Ignored:    data/DDEresp_list.csv
    Ignored:    data/DEG-GO/
    Ignored:    data/DEG_cormotif.RDS
    Ignored:    data/DF_Plate_Peak.csv
    Ignored:    data/DRC48hoursdata.csv
    Ignored:    data/Da24counts.txt
    Ignored:    data/Dx24counts.txt
    Ignored:    data/Dx_reQTL_specific.txt
    Ignored:    data/EPIstorelist24.RDS
    Ignored:    data/Ep24counts.txt
    Ignored:    data/FC_necela.RDS
    Ignored:    data/FC_necela_names.RDS
    Ignored:    data/Full_LD_rep.csv
    Ignored:    data/GOIsig.csv
    Ignored:    data/GOplots.R
    Ignored:    data/GTEX_setsimple.csv
    Ignored:    data/GTEX_sig24.RDS
    Ignored:    data/GTEx_gene_list.csv
    Ignored:    data/HFGWASgene_table.csv
    Ignored:    data/HF_geneset.RDS
    Ignored:    data/Heart_Left_Ventricle.v8.egenes.txt
    Ignored:    data/Heatmap_mat.RDS
    Ignored:    data/Heatmap_sig.RDS
    Ignored:    data/Hf_GWAS.txt
    Ignored:    data/K_cluster
    Ignored:    data/K_cluster_kisthree.csv
    Ignored:    data/K_cluster_kistwo.csv
    Ignored:    data/Knowles_log2cpm_real.RDS
    Ignored:    data/Knowles_variation_data.RDS
    Ignored:    data/Knowles_variation_data_conc.RDS
    Ignored:    data/Knowlesvarlist.RDS
    Ignored:    data/LD50_05via.csv
    Ignored:    data/LDH48hoursdata.csv
    Ignored:    data/Mt24counts.txt
    Ignored:    data/NoRespDEG_final.csv
    Ignored:    data/RINsamplelist.txt
    Ignored:    data/RNA_seq_trial.RDS
    Ignored:    data/Schneider_GWAS.txt
    Ignored:    data/Seonane2019supp1.txt
    Ignored:    data/Sup_replicate_values.csv
    Ignored:    data/TMMnormed_x.RDS
    Ignored:    data/TOP2Bi-24hoursGO_analysis.csv
    Ignored:    data/TR24counts.txt
    Ignored:    data/TableS10.csv
    Ignored:    data/TableS11.csv
    Ignored:    data/TableS9.csv
    Ignored:    data/Top2_expression.RDS
    Ignored:    data/Top2biresp_cluster24h.csv
    Ignored:    data/Var_test_list.RDS
    Ignored:    data/Var_test_list24.RDS
    Ignored:    data/Var_test_list24alt.RDS
    Ignored:    data/Var_test_list3.RDS
    Ignored:    data/Vargenes.RDS
    Ignored:    data/Viabilitylistfull.csv
    Ignored:    data/allexpressedgenes.txt
    Ignored:    data/allfinal3hour.RDS
    Ignored:    data/allgenes.txt
    Ignored:    data/allmatrix.RDS
    Ignored:    data/allmymatrix.RDS
    Ignored:    data/annotation_data_frame.RDS
    Ignored:    data/averageviabilitytable.RDS
    Ignored:    data/averageviabilitytable.csv
    Ignored:    data/avgLD50.RDS
    Ignored:    data/avg_LD50.RDS
    Ignored:    data/avg_via_table.csv
    Ignored:    data/backGL.txt
    Ignored:    data/burr_genes.RDS
    Ignored:    data/calcium_data.RDS
    Ignored:    data/clamp_summary.RDS
    Ignored:    data/cormotif_3hk1-8.RDS
    Ignored:    data/cormotif_initalK5.RDS
    Ignored:    data/cormotif_initialK5.RDS
    Ignored:    data/cormotif_initialall.RDS
    Ignored:    data/cormotifprobs.csv
    Ignored:    data/counts24hours.RDS
    Ignored:    data/cpmcount.RDS
    Ignored:    data/cpmnorm_counts.csv
    Ignored:    data/crispr_genes.csv
    Ignored:    data/ctnnt_results.txt
    Ignored:    data/cvd_GWAS.txt
    Ignored:    data/dat_cpm.RDS
    Ignored:    data/data_outline.txt
    Ignored:    data/drug_noveh1.csv
    Ignored:    data/efit2.RDS
    Ignored:    data/efit2_final.RDS
    Ignored:    data/efit2results.RDS
    Ignored:    data/ensembl_backup.RDS
    Ignored:    data/ensgtotal.txt
    Ignored:    data/filcpm_counts.RDS
    Ignored:    data/filenameonly.txt
    Ignored:    data/filtered_cpm_counts.csv
    Ignored:    data/filtered_raw_counts.csv
    Ignored:    data/filtermatrix_x.RDS
    Ignored:    data/folder_05top/
    Ignored:    data/framefun24.RDS
    Ignored:    data/geneDoxonlyQTL.csv
    Ignored:    data/gene_corr_df.RDS
    Ignored:    data/gene_corr_frame.RDS
    Ignored:    data/gene_prob_tran3h.RDS
    Ignored:    data/gene_probabilityk5.RDS
    Ignored:    data/geneset_24.RDS
    Ignored:    data/gostresTop2bi_ER.RDS
    Ignored:    data/gostresTop2bi_LR
    Ignored:    data/gostresTop2bi_LR.RDS
    Ignored:    data/gostresTop2bi_TI.RDS
    Ignored:    data/gostrescoNR
    Ignored:    data/gtex/
    Ignored:    data/heartgenes.csv
    Ignored:    data/highly_var_genelist.RDS
    Ignored:    data/hsa_kegg_anno.RDS
    Ignored:    data/individualDRCfile.RDS
    Ignored:    data/individual_DRC48.RDS
    Ignored:    data/individual_LDH48.RDS
    Ignored:    data/indv_noveh1.csv
    Ignored:    data/kegglistDEG.RDS
    Ignored:    data/kegglistDEG24.RDS
    Ignored:    data/kegglistDEG3.RDS
    Ignored:    data/knowfig4.csv
    Ignored:    data/knowfig5.csv
    Ignored:    data/label_list.RDS
    Ignored:    data/ld50_table.csv
    Ignored:    data/mean_vardrug1.csv
    Ignored:    data/mean_varframe.csv
    Ignored:    data/mymatrix.RDS
    Ignored:    data/new_ld50avg.RDS
    Ignored:    data/nonresponse_cluster24h.csv
    Ignored:    data/norm_LDH.csv
    Ignored:    data/norm_counts.csv
    Ignored:    data/old_sets/
    Ignored:    data/organized_drugframe.csv
    Ignored:    data/pca_all_anno.csv
    Ignored:    data/plan2plot.png
    Ignored:    data/plot_intv_list.RDS
    Ignored:    data/plot_list_DRC.RDS
    Ignored:    data/qval24hr.RDS
    Ignored:    data/qval3hr.RDS
    Ignored:    data/qvalueEPItemp.RDS
    Ignored:    data/raw_counts.csv
    Ignored:    data/response_cluster24h.csv
    Ignored:    data/sampsettrz.RDS
    Ignored:    data/schneider_closest_output.RDS
    Ignored:    data/sigVDA24.txt
    Ignored:    data/sigVDA3.txt
    Ignored:    data/sigVDX24.txt
    Ignored:    data/sigVDX3.txt
    Ignored:    data/sigVEP24.txt
    Ignored:    data/sigVEP3.txt
    Ignored:    data/sigVMT24.txt
    Ignored:    data/sigVMT3.txt
    Ignored:    data/sigVTR24.txt
    Ignored:    data/sigVTR3.txt
    Ignored:    data/siglist.RDS
    Ignored:    data/siglist_final.RDS
    Ignored:    data/siglist_old.RDS
    Ignored:    data/slope_table.csv
    Ignored:    data/supp10_24hlist.RDS
    Ignored:    data/supp10_3hlist.RDS
    Ignored:    data/supp_normLDH48.RDS
    Ignored:    data/supp_pca_all_anno.RDS
    Ignored:    data/supp_viadata.csv
    Ignored:    data/table3a.omar
    Ignored:    data/test_run_sample_list.txt
    Ignored:    data/testlist.txt
    Ignored:    data/toplistall.RDS
    Ignored:    data/trtonly_24h_genes.RDS
    Ignored:    data/trtonly_3h_genes.RDS
    Ignored:    data/tvl24hour.txt
    Ignored:    data/tvl24hourw.txt
    Ignored:    data/venn_code.R
    Ignored:    data/viability.RDS

Untracked files:
    Untracked:  .RDataTmp
    Untracked:  .RDataTmp1
    Untracked:  .RDataTmp2
    Untracked:  .RDataTmp3
    Untracked:  3hr all.pdf
    Untracked:  Code_files_list.csv
    Untracked:  Data_files_list.csv
    Untracked:  Doxorubicin_vehicle_3_24.csv
    Untracked:  Doxtoplist.csv
    Untracked:  EPIqvalue_analysis.Rmd
    Untracked:  Final.sup.pdf
    Untracked:  GWAS_list_of_interest.xlsx
    Untracked:  KEGGpathwaylist.R
    Untracked:  NA
    Untracked:  OmicNavigator_learn.R
    Untracked:  SNP_egenes_allfiles.RDS
    Untracked:  SNP_frame_pdf
    Untracked:  SNP_frame_pdf.pdf
    Untracked:  SigDoxtoplist.csv
    Untracked:  analysis/DRC_viability_check.Rmd
    Untracked:  analysis/New_code_dec-23.R
    Untracked:  analysis/cellcycle_kegg_genes.R
    Untracked:  analysis/ciFIT.R
    Untracked:  analysis/export_to_excel.R
    Untracked:  analysis/featureCountsPLAY.R
    Untracked:  cleanupfiles_script.R
    Untracked:  code/biomart_gene_names.R
    Untracked:  code/constantcode.R
    Untracked:  code/corMotifcustom.R
    Untracked:  code/cpm_boxplot.R
    Untracked:  code/extracting_ggplot_data.R
    Untracked:  code/movingfilesto_ppl.R
    Untracked:  code/pearson_extract_func.R
    Untracked:  code/pearson_tox_extract.R
    Untracked:  code/plot1C.fun.R
    Untracked:  code/spearman_extract_func.R
    Untracked:  code/venndiagramcolor_control.R
    Untracked:  cormotif_p.post.list_4.csv
    Untracked:  figS1024h.pdf
    Untracked:  final.pdf
    Untracked:  individual-legenddark2.png
    Untracked:  installed_old.rda
    Untracked:  listoftranscripts
    Untracked:  motif_ER.txt
    Untracked:  motif_LR.txt
    Untracked:  motif_NR.txt
    Untracked:  motif_TI.txt
    Untracked:  output/ABHD8_dif_values.RDS
    Untracked:  output/C3orf18_dif_values.RDS
    Untracked:  output/Cardiotox_dif_values.RDS
    Untracked:  output/DNR_DEGlist.csv
    Untracked:  output/DNRvenn.RDS
    Untracked:  output/DOX_DEGlist.csv
    Untracked:  output/DOX_de_goi.csv
    Untracked:  output/DOXvenn.RDS
    Untracked:  output/EEF1B2_dif_values.RDS
    Untracked:  output/EEIG1_dif_values.RDS
    Untracked:  output/EPI_DEGlist.csv
    Untracked:  output/EPIvenn.RDS
    Untracked:  output/ESGN_rds.RDS
    Untracked:  output/FC_necela.RDS
    Untracked:  output/FC_necela_names.RDS
    Untracked:  output/FRS2_dif_values.RDS
    Untracked:  output/Figures/
    Untracked:  output/GTEXv8_gene_median_tpm.RDS
    Untracked:  output/GTEXv8_gene_tpm_heart_left_ventricle.RDS
    Untracked:  output/HDDC2_dif_values.RDS
    Untracked:  output/HER2_gene.RDS
    Untracked:  output/KEGGcellcyclegenes.RDS
    Untracked:  output/Knowles_S13.csv
    Untracked:  output/Knowles_log2cpm.csv
    Untracked:  output/Knowles_supp13.csv
    Untracked:  output/LD50tox_table.RDS
    Untracked:  output/MTX_DEGlist.csv
    Untracked:  output/MTXvenn.RDS
    Untracked:  output/PEX16_dif_values.RDS
    Untracked:  output/RASIP1_dif_values.RDS
    Untracked:  output/RMI1_dif_values.RDS
    Untracked:  output/RSID_QTL_list_full.txt
    Untracked:  output/SETA_analysis_reyes.RDS
    Untracked:  output/SGWAS_top50_order.csv
    Untracked:  output/SLC27A1_dif_values.RDS
    Untracked:  output/SLC28A3_dif_values.RDS
    Untracked:  output/SNP_egenes_allfiles.RDS
    Untracked:  output/SNP_list_ID.RDS
    Untracked:  output/SNP_list_full.txt
    Untracked:  output/SNP_supp.RDS
    Untracked:  output/TGFBR3L_dif_values.RDS
    Untracked:  output/TNS2_dif_values.RDS
    Untracked:  output/TOP_50SNPreffile.csv
    Untracked:  output/TRZ_DEGlist.csv
    Untracked:  output/TableS8.csv
    Untracked:  output/Volcanoplot_10
    Untracked:  output/Volcanoplot_10.RDS
    Untracked:  output/ZNF740_dif_values.RDS
    Untracked:  output/allfinal_sup10.RDS
    Untracked:  output/counts_v8_heart_left_ventricle_gct.RDS
    Untracked:  output/crisprfoldchange.RDS
    Untracked:  output/endocytosisgenes.csv
    Untracked:  output/expre7k.csv
    Untracked:  output/expressed_egenes_by_RSID.csv
    Untracked:  output/gene_corr_fig9.RDS
    Untracked:  output/genes.RDS
    Untracked:  output/legend_b.RDS
    Untracked:  output/motif_ERrep.RDS
    Untracked:  output/motif_LRrep.RDS
    Untracked:  output/motif_NRrep.RDS
    Untracked:  output/motif_TI_rep.RDS
    Untracked:  output/near_genes_SNP1.RDS
    Untracked:  output/necela_list_test.RDS
    Untracked:  output/necela_val_genes.RDS
    Untracked:  output/output-old/
    Untracked:  output/rank24genes.csv
    Untracked:  output/rank3genes.csv
    Untracked:  output/sequencinginformationforsupp.csv
    Untracked:  output/sequencinginformationforsupp.prn
    Untracked:  output/sigVDA24.txt
    Untracked:  output/sigVDA3.txt
    Untracked:  output/sigVDX24.txt
    Untracked:  output/sigVDX3.txt
    Untracked:  output/sigVEP24.txt
    Untracked:  output/sigVEP3.txt
    Untracked:  output/sigVMT24.txt
    Untracked:  output/sigVMT3.txt
    Untracked:  output/sigVTR24.txt
    Untracked:  output/sigVTR3.txt
    Untracked:  output/supplementary_motif_list_GO.RDS
    Untracked:  output/test_biomart_run.RDS
    Untracked:  output/toptablebydrug.RDS
    Untracked:  output/trop_knowles_fun.csv
    Untracked:  output/tvl24hour.txt
    Untracked:  output/x_counts.RDS
    Untracked:  reneebasecode.R

Unstaged changes:
    Modified:   analysis/DRC_analysis.Rmd
    Modified:   analysis/Figure4.Rmd
    Modified:   analysis/Figure5.Rmd
    Modified:   analysis/GTEx_genes.Rmd
    Deleted:    analysis/Knowles2019.Rmd
    Modified:   output/daplot.RDS
    Modified:   output/dxplot.RDS
    Modified:   output/epplot.RDS
    Modified:   output/mtplot.RDS
    Modified:   output/plan2plot.png
    Modified:   output/trplot.RDS
    Modified:   output/veplot.RDS

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Figure7.Rmd) and HTML (docs/Figure7.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 5a1f2a6 reneeisnowhere 2024-02-06 updates to final figure
html 7308a2e reneeisnowhere 2024-02-06 Build site.
Rmd d3bb5e9 reneeisnowhere 2024-02-06 updates to final figure
html ffba2b7 reneeisnowhere 2023-09-28 Build site.
Rmd 87a496b reneeisnowhere 2023-09-28 updates to figure links and CSS script
html 89d0333 reneeisnowhere 2023-08-15 Build site.
Rmd 93030ec reneeisnowhere 2023-08-15 updates to Figure 7
html c40aced reneeisnowhere 2023-07-26 Build site.
Rmd 58c7965 reneeisnowhere 2023-07-26 updating figures
html ed18a48 reneeisnowhere 2023-07-07 Build site.
Rmd 63d054a reneeisnowhere 2023-07-07 Various changes to graphs. pending Monday-renames
html d46bc98 reneeisnowhere 2023-07-06 Build site.
Rmd 561369b reneeisnowhere 2023-07-06 updated plots
html e0d8052 reneeisnowhere 2023-06-28 Build site.
Rmd 1b201cc reneeisnowhere 2023-06-28 adding foldable code
html 2a6d993 reneeisnowhere 2023-06-28 Build site.
Rmd 797b4ce reneeisnowhere 2023-06-28 adding in Fig7

library(tidyverse)
library(gridtext)
library(scales)
library(kableExtra)
library(qvalue)
library(data.table)
library(ComplexHeatmap)
library(readr)
library(limma)
library(edgeR)
drug_palc <- c("#8B006D","#DF707E","#F1B72B", "#3386DD","#707031","#41B333")
drug_pal_fact <- c("#8B006D" ,"#DF707E", "#F1B72B" ,"#3386DD", "#707031","#41B333")

cpmcounts <- readRDS("data/cpmcount.RDS")
DEG_cormotif <- readRDS("data/DEG_cormotif.RDS")
list2env(DEG_cormotif,envir=.GlobalEnv)
<environment: R_GlobalEnv>
backGL <- read.csv("data/backGL.txt", row.names =1)
col_fun1 = circlize::colorRamp2(c(-1, 3), c("white", "purple"))
col_funFC= circlize::colorRamp2(c(-2,0, 2), c("darkgreen","white", "darkorange2"))
col_funTOX = circlize::colorRamp2(c(-1,0, 1), c("darkviolet", "white","firebrick4"))


DOXrespGene <- readRDS("output/DOXreQTLs.RDS")
toplistall <- readRDS("data/toplistall.RDS")

list2env(DEG_cormotif,envir=.GlobalEnv)
<environment: R_GlobalEnv>
counts_v8_heart_left_ventricle_gct <- readRDS("output/counts_v8_heart_left_ventricle_gct.RDS")
names_gtex_genes <- counts_v8_heart_left_ventricle_gct %>% 
  dplyr::select(Name, Description)
gtex_counts_matrix<- counts_v8_heart_left_ventricle_gct %>% 
  column_to_rownames("Name") %>% 
  dplyr::select(!id) %>% 
  dplyr::select(!Description) %>% 
  as.matrix()
  
# cpm <- cpm(gtex_counts_matrix)
lcpm <- cpm(gtex_counts_matrix, log=TRUE)  ### for determining the basic cutoffs

row_means <- rowMeans(lcpm)
gtex_x <- lcpm[row_means > 0,]
GTEX_heartLV_log2cpm <- gtex_x %>% 
  as.data.frame() %>%
  mutate(Name = rownames(gtex_x)) %>% 
  left_join(.,names_gtex_genes, by =c("Name"))





SGWAS_order_frame <- read.csv("output/SGWAS_top50_order.csv", row.names = 1)

col_fun5 = circlize::colorRamp2(c(0, 5), c("white", "purple"))
## supplement 1
chrom_reg_Seoane <- read_csv(file = "data/Seonane2019supp1.txt",col_types = cols(...1 = col_skip()))
Seoane_2019 <- chrom_reg_Seoane[,2]
names(Seoane_2019) <- "ENTREZID"
Chrom_reg <- data.frame("entrez"=(unique(Seoane_2019$ENTREZID)))

Sup4seoane <- read.csv("output/Sup4seoane.csv", row.names = 1)
DOX_reg <- Sup4seoane  %>% 
  filter(pval.expAnth<0.05) %>% 
  distinct(entrez, .keep_all = TRUE) %>% 
  dplyr::select(entrez)
base_egene <-readRDS("output/knowles4.RDS")
resp_egene <-readRDS("output/knowles5.RDS")

Figure 7: Genes in AC toxicity-associated loci respond to TOP2i.

24 hours

orderit <- data.frame(SYMBOL=c(SGWAS_order_frame$SYMBOL,'RARG',
                        'TNS2', 
                        'ZNF740',
                        'SLC28A3',
                        'RMI1',
                        'EEF1B2',
                        'FRS2', 
                        'HDDC2')) %>% 
  left_join(.,backGL) %>% 
  mutate(motif= if_else(ENTREZID %in% motif_ER, "ER", if_else(ENTREZID %in% motif_LR, "LR",if_else(ENTREZID %in% motif_TI, "TI", "NR" )))) %>% 
  mutate(chrom_gene= if_else(ENTREZID %in% Chrom_reg$entrez,"yes","no")) %>% 
  mutate(Dox_respegene= if_else(ENTREZID %in% resp_egene$entrezgene_id, "yes","no")) %>% 
  mutate(ACchrom_gene= if_else(ENTREZID %in%  DOX_reg$entrez,"yes","no")) %>%  
  mutate(gTEX_heart=if_else(SYMBOL %in% GTEX_heartLV_log2cpm$Description,  "yes","no"))




toplistall %>% 
    mutate(drug=factor(id, levels = c('DOX','EPI','DNR','MTX','TRZ','VEH'))) %>% 
  filter(ENTREZID %in% orderit$ENTREZID) %>% 
   filter(time =="24_hours") %>% 
  dplyr::select(ENTREZID , id,logFC, adj.P.Val, SYMBOL) 
             ENTREZID  id        logFC    adj.P.Val  SYMBOL
3958...1         3958 DNR -2.841654211 1.243290e-13  LGALS3
55020...2       55020 DNR  1.333658801 1.747225e-12   TTC38
5095...3         5095 DNR  1.071448603 1.388146e-07    PCCA
29899...4       29899 DNR  1.954225576 4.986630e-07   GPSM2
23371...5       23371 DNR  1.604978233 1.056163e-06    TNS2
57161...6       57161 DNR -2.383146876 3.370044e-06   PELI2
283337...7     283337 DNR -0.579733508 1.525722e-04  ZNF740
150383...8     150383 DNR  1.104262721 1.726928e-04   CDPF1
80856...9       80856 DNR  0.822616727 3.110247e-04    LNPK
4023...10        4023 DNR  1.549451664 5.464607e-04     LPL
51020...11      51020 DNR  0.837500708 1.303926e-03   HDDC2
23262...12      23262 DNR  0.672772048 1.871912e-03 PPIP5K2
10818...13      10818 DNR -0.546865539 1.991410e-03    FRS2
6272...14        6272 DNR  0.621888001 5.362112e-03   SORT1
5916...15        5916 DNR -1.329791599 7.072597e-03    RARG
54826...16      54826 DNR  0.590225431 9.667914e-03    GIN1
78996...17      78996 DNR -0.386375935 1.795971e-02   CYREN
9620...18        9620 DNR  0.363295608 3.669460e-02  CELSR1
80010...19      80010 DNR  0.671889247 4.031601e-02    RMI1
23151...20      23151 DNR  0.436443420 4.741931e-02  GRAMD4
23155...21      23155 DNR  0.337151049 5.197844e-02   CLCC1
64078...22      64078 DNR  1.330462721 5.950696e-02 SLC28A3
10499...23      10499 DNR  0.411899518 6.955554e-02   NCOA2
54477...24      54477 DNR  0.487103345 7.152302e-02 PLEKHA5
23327...25      23327 DNR -0.256622161 8.379995e-02  NEDD4L
4692...26        4692 DNR  0.226204661 1.454533e-01     NDN
57110...27      57110 DNR -0.448716677 3.213072e-01  PLAAT1
344595...28    344595 DNR -0.399962237 4.100997e-01    DUBR
1933...29        1933 DNR -0.107304755 4.912870e-01  EEF1B2
5066...30        5066 DNR  0.154685819 5.472580e-01     PAM
323...31          323 DNR -0.210918044 5.566906e-01   APBB2
80059...32      80059 DNR -0.239094603 6.889705e-01  LRRTM4
8803...33        8803 DNR  0.080349938 7.278560e-01  SUCLA2
8214...34        8214 DNR -0.108231532 7.767081e-01   DGCR6
7991...35        7991 DNR  0.040113972 8.234825e-01   TUSC3
108...36          108 DNR -0.126695676 8.273045e-01   ADCY2
79730...37      79730 DNR -0.057772199 9.021996e-01   NSUN7
11128...38      11128 DNR  0.029517711 9.059731e-01  POLR3A
3958...39        3958 DOX -2.592937478 2.490015e-12  LGALS3
55020...40      55020 DOX  1.283014820 2.916892e-12   TTC38
29899...41      29899 DOX  2.518139384 2.101681e-09   GPSM2
5095...42        5095 DOX  1.010845341 2.818499e-07    PCCA
23371...43      23371 DOX  1.598507639 6.706429e-07    TNS2
57161...44      57161 DOX -2.341492097 3.836758e-06   PELI2
4023...45        4023 DOX  1.808675205 7.124618e-05     LPL
80856...46      80856 DOX  0.895190712 8.678073e-05    LNPK
10818...47      10818 DOX -0.676539058 1.291338e-04    FRS2
78996...48      78996 DOX -0.537877803 7.555844e-04   CYREN
150383...49    150383 DOX  0.858362938 2.193138e-03   CDPF1
9620...50        9620 DOX  0.517275591 2.869762e-03  CELSR1
51020...51      51020 DOX  0.701624821 5.731184e-03   HDDC2
283337...52    283337 DOX -0.381694054 1.117693e-02  ZNF740
23155...53      23155 DOX  0.405344826 1.791996e-02   CLCC1
23151...54      23151 DOX  0.508471630 1.886110e-02  GRAMD4
6272...55        6272 DOX  0.534740395 1.924261e-02   SORT1
23262...56      23262 DOX  0.461885237 2.888855e-02 PPIP5K2
64078...57      64078 DOX  1.500098762 2.987324e-02 SLC28A3
80010...58      80010 DOX  0.668904577 3.576733e-02    RMI1
5916...59        5916 DOX -0.964405340 5.402876e-02    RARG
54826...60      54826 DOX  0.421260779 5.998781e-02    GIN1
1933...61        1933 DOX -0.212731820 1.537205e-01  EEF1B2
7991...62        7991 DOX -0.205234135 2.053194e-01   TUSC3
54477...63      54477 DOX  0.334744068 2.250581e-01 PLEKHA5
79730...64      79730 DOX  0.476855272 2.404724e-01   NSUN7
344595...65    344595 DOX -0.524001048 2.637491e-01    DUBR
80059...66      80059 DOX -0.569911090 2.893850e-01  LRRTM4
4692...67        4692 DOX  0.144561267 3.736745e-01     NDN
8214...68        8214 DOX -0.302754712 3.788465e-01   DGCR6
57110...69      57110 DOX -0.354560827 4.421703e-01  PLAAT1
10499...70      10499 DOX  0.147512070 5.431318e-01   NCOA2
23327...71      23327 DOX -0.080177636 6.273533e-01  NEDD4L
8803...72        8803 DOX -0.087400124 7.094227e-01  SUCLA2
11128...73      11128 DOX  0.060765550 7.943625e-01  POLR3A
108...74          108 DOX  0.127672688 8.270659e-01   ADCY2
5066...75        5066 DOX  0.059664456 8.344395e-01     PAM
323...76          323 DOX -0.031367303 9.393574e-01   APBB2
3958...77        3958 EPI -2.258936236 2.519057e-10  LGALS3
55020...78      55020 EPI  0.974047987 7.331358e-09   TTC38
57161...79      57161 EPI -2.714417489 2.189093e-07   PELI2
29899...80      29899 EPI  1.863235071 1.590451e-06   GPSM2
23371...81      23371 EPI  1.548244317 2.483790e-06    TNS2
5095...82        5095 EPI  0.829217065 1.522752e-05    PCCA
9620...83        9620 EPI  0.673682504 1.442416e-04  CELSR1
10818...84      10818 EPI -0.662974585 2.169251e-04    FRS2
80856...85      80856 EPI  0.839945811 2.618033e-04    LNPK
150383...86    150383 EPI  0.942381848 1.099590e-03   CDPF1
23151...87      23151 EPI  0.734875425 1.137112e-03  GRAMD4
51020...88      51020 EPI  0.832885435 1.421275e-03   HDDC2
4023...89        4023 EPI  1.351101119 2.328703e-03     LPL
54826...90      54826 EPI  0.674858946 3.507401e-03    GIN1
23262...91      23262 EPI  0.602541437 5.337053e-03 PPIP5K2
283337...92    283337 EPI -0.415051660 7.118210e-03  ZNF740
5916...93        5916 EPI -1.219583078 1.479648e-02    RARG
64078...94      64078 EPI  1.702459586 1.707977e-02 SLC28A3
23155...95      23155 EPI  0.369459458 3.478725e-02   CLCC1
6272...96        6272 EPI  0.464185845 4.419093e-02   SORT1
54477...97      54477 EPI  0.512315022 6.054740e-02 PLEKHA5
78996...98      78996 EPI -0.300441979 7.403190e-02   CYREN
7991...99        7991 EPI -0.242241759 1.322443e-01   TUSC3
80010...100     80010 EPI  0.469909001 1.524626e-01    RMI1
1933...101       1933 EPI -0.213535720 1.551221e-01  EEF1B2
11128...102     11128 EPI  0.224307657 2.966829e-01  POLR3A
79730...103     79730 EPI  0.417825538 3.192457e-01   NSUN7
4692...104       4692 EPI -0.153538531 3.515660e-01     NDN
8214...105       8214 EPI -0.277219655 4.398229e-01   DGCR6
57110...106     57110 EPI -0.339243025 4.802483e-01  PLAAT1
323...107         323 EPI -0.187249253 6.196852e-01   APBB2
23327...108     23327 EPI -0.075188817 6.598565e-01  NEDD4L
10499...109     10499 EPI  0.100464458 7.011245e-01   NCOA2
344595...110   344595 EPI -0.182858257 7.439904e-01    DUBR
8803...111       8803 EPI -0.071967777 7.700056e-01  SUCLA2
80059...112     80059 EPI -0.148755480 8.211226e-01  LRRTM4
5066...113       5066 EPI -0.045912799 8.793958e-01     PAM
108...114         108 EPI -0.039274665 9.511661e-01   ADCY2
29899...115     29899 MTX  1.934044382 3.815931e-06   GPSM2
4023...116       4023 MTX  1.451134843 5.826444e-03     LPL
80010...117     80010 MTX  1.092226550 6.604137e-03    RMI1
5095...118       5095 MTX  0.577769680 7.822416e-03    PCCA
80856...119     80856 MTX  0.685663398 1.284470e-02    LNPK
283337...120   283337 MTX -0.280222769 1.954044e-01  ZNF740
10818...121     10818 MTX -0.303886126 2.378802e-01    FRS2
79730...122     79730 MTX  0.628036510 2.868955e-01   NSUN7
3958...123       3958 MTX -0.499180352 3.094334e-01  LGALS3
51020...124     51020 MTX  0.366332291 3.373271e-01   HDDC2
23327...125     23327 MTX  0.198830941 3.917168e-01  NEDD4L
9620...126       9620 MTX  0.208898350 4.712695e-01  CELSR1
64078...127     64078 MTX  0.768540550 4.758212e-01 SLC28A3
57161...128     57161 MTX -0.611530252 5.080329e-01   PELI2
5066...129       5066 MTX  0.250853051 5.499338e-01     PAM
23151...130     23151 MTX  0.209526820 5.825203e-01  GRAMD4
23155...131     23155 MTX  0.164554919 5.877302e-01   CLCC1
8803...132       8803 MTX  0.173292448 6.485778e-01  SUCLA2
80059...133     80059 MTX -0.403073184 6.821231e-01  LRRTM4
6272...134       6272 MTX  0.179183592 6.859679e-01   SORT1
5916...135       5916 MTX -0.340441408 7.425170e-01    RARG
55020...136     55020 MTX  0.085053540 7.601342e-01   TTC38
150383...137   150383 MTX -0.154959612 7.638427e-01   CDPF1
7991...138       7991 MTX  0.093568355 7.664325e-01   TUSC3
108...139         108 MTX  0.297466826 7.704286e-01   ADCY2
57110...140     57110 MTX  0.264958653 7.734792e-01  PLAAT1
8214...141       8214 MTX  0.189812119 7.812516e-01   DGCR6
1933...142       1933 MTX  0.074340382 8.149139e-01  EEF1B2
54826...143     54826 MTX -0.107587669 8.166223e-01    GIN1
23371...144     23371 MTX  0.132833588 8.258590e-01    TNS2
78996...145     78996 MTX -0.079577280 8.278189e-01   CYREN
23262...146     23262 MTX  0.094249849 8.424378e-01 PPIP5K2
323...147         323 MTX  0.133742960 8.617852e-01   APBB2
54477...148     54477 MTX  0.102791888 8.679409e-01 PLEKHA5
11128...149     11128 MTX -0.065059234 8.900008e-01  POLR3A
10499...150     10499 MTX  0.065432833 9.015410e-01   NCOA2
344595...151   344595 MTX -0.094804211 9.359175e-01    DUBR
4692...152       4692 MTX  0.024324107 9.507869e-01     NDN
23371...153     23371 TRZ -0.360682790 9.999716e-01    TNS2
283337...154   283337 TRZ -0.182311739 9.999716e-01  ZNF740
5916...155       5916 TRZ -0.416339236 9.999716e-01    RARG
29899...156     29899 TRZ  0.234391483 9.999716e-01   GPSM2
4023...157       4023 TRZ  0.314414654 9.999716e-01     LPL
54826...158     54826 TRZ -0.147747416 9.999716e-01    GIN1
80856...159     80856 TRZ  0.154476640 9.999716e-01    LNPK
23151...160     23151 TRZ -0.128233102 9.999716e-01  GRAMD4
79730...161     79730 TRZ -0.218396111 9.999716e-01   NSUN7
9620...162       9620 TRZ -0.105210839 9.999716e-01  CELSR1
64078...163     64078 TRZ -0.302421643 9.999716e-01 SLC28A3
78996...164     78996 TRZ -0.077524620 9.999716e-01   CYREN
57161...165     57161 TRZ  0.238798361 9.999716e-01   PELI2
150383...166   150383 TRZ -0.102010613 9.999716e-01   CDPF1
323...167         323 TRZ -0.127795059 9.999716e-01   APBB2
51020...168     51020 TRZ  0.096587761 9.999716e-01   HDDC2
55020...169     55020 TRZ -0.049872370 9.999716e-01   TTC38
10499...170     10499 TRZ -0.076894497 9.999716e-01   NCOA2
1933...171       1933 TRZ  0.045717271 9.999716e-01  EEF1B2
6272...172       6272 TRZ  0.072173304 9.999716e-01   SORT1
80010...173     80010 TRZ  0.089587489 9.999716e-01    RMI1
3958...174       3958 TRZ -0.086684248 9.999716e-01  LGALS3
80059...175     80059 TRZ  0.137665553 9.999716e-01  LRRTM4
23327...176     23327 TRZ -0.037600446 9.999716e-01  NEDD4L
8803...177       8803 TRZ  0.047787071 9.999716e-01  SUCLA2
5095...178       5095 TRZ -0.035722392 9.999716e-01    PCCA
23262...179     23262 TRZ  0.043344764 9.999716e-01 PPIP5K2
8214...180       8214 TRZ  0.066369745 9.999716e-01   DGCR6
10818...181     10818 TRZ  0.034157048 9.999716e-01    FRS2
7991...182       7991 TRZ -0.028941499 9.999716e-01   TUSC3
4692...183       4692 TRZ -0.023636849 9.999716e-01     NDN
11128...184     11128 TRZ  0.028833971 9.999716e-01  POLR3A
54477...185     54477 TRZ -0.035791323 9.999716e-01 PLEKHA5
108...186         108 TRZ -0.043025639 9.999716e-01   ADCY2
57110...187     57110 TRZ  0.031961542 9.999716e-01  PLAAT1
23155...188     23155 TRZ -0.005764121 9.999716e-01   CLCC1
344595...189   344595 TRZ -0.007991521 9.999716e-01    DUBR
5066...190       5066 TRZ -0.001493139 9.999716e-01     PAM
GWASabsFCsig <- 
  toplistall %>% 
    mutate(drug=factor(id, levels = c('DOX','EPI','DNR','MTX','TRZ','VEH'))) %>% 
  filter(ENTREZID %in% orderit$ENTREZID) %>% 
   filter(time =="24_hours") %>% 
  dplyr::select(ENTREZID , id,logFC, adj.P.Val, SYMBOL)  %>%
  pivot_wider(id_cols=id, 
              names_from = SYMBOL, 
              values_from =adj.P.Val)
  
gwas_sig_mat <- GWASabsFCsig %>% 
   column_to_rownames(var="id") %>%
  dplyr::select(orderit$SYMBOL) %>%
  as.matrix()
 

GWASabsFC <- toplistall %>% 
  
  # filter(id !="TRZ") %>% 
  filter(time=="24_hours") %>% 
  mutate(logFC= logFC*(-1)) %>%
  filter(ENTREZID %in% orderit$ENTREZID) %>% 
  dplyr::select(SYMBOL ,time, id, logFC) %>% 
  pivot_wider(id_cols=id, 
              names_from = SYMBOL, 
              values_from = logFC) %>% 
  column_to_rownames(var="id") %>%
  dplyr::select(orderit$SYMBOL) %>%
  as.matrix()

study_anno <- data.frame(Study=c(rep("GWAS",35),rep("TWAS",3)),motif=orderit$motif,chrom_gene=orderit$chrom_gene,Dox_respegene=orderit$Dox_respegene, ACchrom_gene=orderit$ACchrom_gene,gTEX_heart=orderit$gTEX_heart)
rownames(study_anno) <- colnames(GWASabsFC)
ht <- HeatmapAnnotation(df = study_anno,
              col = list(Study=c("GWAS"="darkorange","TWAS"= "blueviolet"),
                         motif = c("LR"="#00BFC4", "NR"="#C77CFF", "ER"="#F8766D", "TI"="#7CAE00"),
chrom_gene=c("yes"="darkred","no"="pink"),
Dox_respegene=c("yes"="darkred","no"="pink"),
ACchrom_gene=c("yes"="darkred","no"="pink"),
gTEX_heart=c("yes"="darkred","no"="pink")))

Heatmap(GWASabsFC, name = "Fold change\nvalues", 
         cluster_rows = FALSE,
        cluster_columns = FALSE, 
        row_names_side = "left",
        col = col_funFC,
        row_order = c('DOX','EPI','DNR', 'MTX','TRZ'),
        column_title = "24 hours Fold Change of AC-toxicity associated loci", 
        column_title_side = "top",
        column_title_gp = gpar(fontsize = 16, fontface = "bold"),
        column_order= orderit$SYMBOL,
        bottom_annotation = ht,
        
        column_names_rot = 90, 
        column_names_gp = gpar(fontsize = 12,fontface="italic"),
        column_names_centered =TRUE,
         cell_fun = function(j, i, x, y, width, height, fill) {
        if(gwas_sig_mat[i, j] <0.05)
            grid.text("*", x, y, gp = gpar(fontsize = 20))
})

Version Author Date
7308a2e reneeisnowhere 2024-02-06
GWASabsFCsig_3 <- 
  toplistall %>% 
    mutate(drug=factor(id, levels = c('DOX','EPI','DNR','MTX','TRZ','VEH'))) %>% 
  filter(ENTREZID %in% orderit$ENTREZID) %>% 
   filter(time =="3_hours") %>% 
  dplyr::select(ENTREZID , id,logFC, adj.P.Val, SYMBOL)  %>%
  pivot_wider(id_cols=id, 
              names_from = SYMBOL, 
              values_from =adj.P.Val)
  
gwas_sig_mat_3 <- GWASabsFCsig_3 %>% 
   column_to_rownames(var="id") %>%
  dplyr::select(orderit$SYMBOL) %>%
  as.matrix()
 

GWASabsFC_3 <- toplistall %>% 
  
  # filter(id !="TRZ") %>% 
  filter(time=="3_hours") %>% 
  mutate(logFC= logFC*(-1)) %>%
  filter(ENTREZID %in% orderit$ENTREZID) %>% 
  dplyr::select(SYMBOL ,time, id, logFC) %>% 
  pivot_wider(id_cols=id, 
              names_from = SYMBOL, 
              values_from = logFC) %>% 
  column_to_rownames(var="id") %>%
  dplyr::select(orderit$SYMBOL) %>%
  as.matrix()

# study_anno <- data.frame(Study=c(rep("GWAS",35),rep("TWAS",3)),motif=orderit$motif,chrom_gene=orderit$chrom_gene,Dox_respegene=orderit$Dox_respegene, ACchrom_gene=orderit$ACchrom_gene,gTEX_heart=orderit$gTEX_heart)
# rownames(study_anno) <- colnames(GWASabsFC)
# ht <- HeatmapAnnotation(df = study_anno,
#               col = list(Study=c("GWAS"="darkorange","TWAS"= "blueviolet"),
#                          motif = c("LR"="#00BFC4", "NR"="#C77CFF", "ER"="#F8766D", "TI"="#7CAE00"),
# chrom_gene=c("yes"="darkred","no"="pink"),
# Dox_respegene=c("yes"="darkred","no"="pink"),
# ACchrom_gene=c("yes"="darkred","no"="pink"),
# gTEX_heart=c("yes"="darkred","no"="pink")))

Heatmap(GWASabsFC_3, name = "Fold change\nvalues", 
         cluster_rows = FALSE,
        cluster_columns = FALSE, 
        row_names_side = "left",
        col = col_funFC,
        row_order = c('DOX','EPI','DNR', 'MTX','TRZ'),
        column_title = "3 hours Log2 Foldchange of AC-toxicity associated loci", 
        column_title_side = "top",
        column_title_gp = gpar(fontsize = 16, fontface = "bold"),
        column_order= orderit$SYMBOL,
        bottom_annotation = ht,
        
        column_names_rot = 90, 
        column_names_gp = gpar(fontsize = 12,fontface="italic"),
        column_names_centered =TRUE,
         cell_fun = function(j, i, x, y, width, height, fill) {
        if(gwas_sig_mat_3[i, j] <0.05)
            grid.text("*", x, y, gp = gpar(fontsize = 20))
})

Version Author Date
7308a2e reneeisnowhere 2024-02-06

More analysis GWAS and TWAS SNPs found in the Schneider data at this link.


sessionInfo()
R version 4.3.1 (2023-06-16 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19045)

Matrix products: default


locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

time zone: America/Chicago
tzcode source: internal

attached base packages:
[1] grid      stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] edgeR_3.42.4          limma_3.56.2          ComplexHeatmap_2.16.0
 [4] data.table_1.14.8     qvalue_2.32.0         kableExtra_1.3.4     
 [7] scales_1.3.0          gridtext_0.1.5        lubridate_1.9.3      
[10] forcats_1.0.0         stringr_1.5.0         dplyr_1.1.3          
[13] purrr_1.0.2           readr_2.1.4           tidyr_1.3.0          
[16] tibble_3.2.1          ggplot2_3.4.4         tidyverse_2.0.0      
[19] workflowr_1.7.1      

loaded via a namespace (and not attached):
 [1] tidyselect_1.2.0    viridisLite_0.4.2   fastmap_1.1.1      
 [4] promises_1.2.1      digest_0.6.33       timechange_0.2.0   
 [7] lifecycle_1.0.4     cluster_2.1.4       processx_3.8.2     
[10] magrittr_2.0.3      compiler_4.3.1      rlang_1.1.2        
[13] sass_0.4.7          tools_4.3.1         utf8_1.2.4         
[16] yaml_2.3.7          knitr_1.45          bit_4.0.5          
[19] plyr_1.8.9          xml2_1.3.5          RColorBrewer_1.1-3 
[22] withr_3.0.0         BiocGenerics_0.46.0 stats4_4.3.1       
[25] fansi_1.0.5         git2r_0.32.0        colorspace_2.1-0   
[28] iterators_1.0.14    cli_3.6.1           rmarkdown_2.25     
[31] crayon_1.5.2        generics_0.1.3      rstudioapi_0.15.0  
[34] httr_1.4.7          reshape2_1.4.4      tzdb_0.4.0         
[37] rjson_0.2.21        cachem_1.0.8        splines_4.3.1      
[40] rvest_1.0.3         parallel_4.3.1      matrixStats_1.1.0  
[43] vctrs_0.6.4         webshot_0.5.5       jsonlite_1.8.7     
[46] callr_3.7.3         IRanges_2.34.1      hms_1.1.3          
[49] GetoptLong_1.0.5    S4Vectors_0.38.2    bit64_4.0.5        
[52] clue_0.3-65         magick_2.8.1        systemfonts_1.0.5  
[55] locfit_1.5-9.8      foreach_1.5.2       jquerylib_0.1.4    
[58] glue_1.6.2          codetools_0.2-19    ps_1.7.5           
[61] shape_1.4.6         stringi_1.7.12      gtable_0.3.4       
[64] later_1.3.1         munsell_0.5.0       pillar_1.9.0       
[67] htmltools_0.5.7     circlize_0.4.15     R6_2.5.1           
[70] doParallel_1.0.17   rprojroot_2.0.4     vroom_1.6.5        
[73] lattice_0.22-5      evaluate_0.23       highr_0.10         
[76] png_0.1-8           httpuv_1.6.12       bslib_0.6.1        
[79] Rcpp_1.0.11         svglite_2.1.2       whisker_0.4.1      
[82] xfun_0.41           fs_1.6.3            getPass_0.2-2      
[85] pkgconfig_2.0.3     GlobalOptions_0.1.2