Last updated: 2024-02-06
Checks: 7 0
Knit directory: Cardiotoxicity/
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20230109)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 5a1f2a6. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .RData
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/variance_values by gene.png
Ignored: data/41588_2018_171_MOESM3_ESMeQTL_ST2_for paper.csv
Ignored: data/Arr_GWAS.txt
Ignored: data/Arr_geneset.RDS
Ignored: data/BC_cell_lines.csv
Ignored: data/BurridgeDOXTOX.RDS
Ignored: data/CADGWASgene_table.csv
Ignored: data/CAD_geneset.RDS
Ignored: data/CALIMA_Data/
Ignored: data/CMD04_75DRCviability.csv
Ignored: data/CMD04_87DRCviability.csv
Ignored: data/CMD05_75DRCviability.csv
Ignored: data/CMD05_87DRCviability.csv
Ignored: data/Clamp_Summary.csv
Ignored: data/Cormotif_24_k1-5_raw.RDS
Ignored: data/Counts_RNA_ERMatthews.txt
Ignored: data/DAgostres24.RDS
Ignored: data/DAtable1.csv
Ignored: data/DDEMresp_list.csv
Ignored: data/DDE_reQTL.txt
Ignored: data/DDEresp_list.csv
Ignored: data/DEG-GO/
Ignored: data/DEG_cormotif.RDS
Ignored: data/DF_Plate_Peak.csv
Ignored: data/DRC48hoursdata.csv
Ignored: data/Da24counts.txt
Ignored: data/Dx24counts.txt
Ignored: data/Dx_reQTL_specific.txt
Ignored: data/EPIstorelist24.RDS
Ignored: data/Ep24counts.txt
Ignored: data/FC_necela.RDS
Ignored: data/FC_necela_names.RDS
Ignored: data/Full_LD_rep.csv
Ignored: data/GOIsig.csv
Ignored: data/GOplots.R
Ignored: data/GTEX_setsimple.csv
Ignored: data/GTEX_sig24.RDS
Ignored: data/GTEx_gene_list.csv
Ignored: data/HFGWASgene_table.csv
Ignored: data/HF_geneset.RDS
Ignored: data/Heart_Left_Ventricle.v8.egenes.txt
Ignored: data/Heatmap_mat.RDS
Ignored: data/Heatmap_sig.RDS
Ignored: data/Hf_GWAS.txt
Ignored: data/K_cluster
Ignored: data/K_cluster_kisthree.csv
Ignored: data/K_cluster_kistwo.csv
Ignored: data/Knowles_log2cpm_real.RDS
Ignored: data/Knowles_variation_data.RDS
Ignored: data/Knowles_variation_data_conc.RDS
Ignored: data/Knowlesvarlist.RDS
Ignored: data/LD50_05via.csv
Ignored: data/LDH48hoursdata.csv
Ignored: data/Mt24counts.txt
Ignored: data/NoRespDEG_final.csv
Ignored: data/RINsamplelist.txt
Ignored: data/RNA_seq_trial.RDS
Ignored: data/Schneider_GWAS.txt
Ignored: data/Seonane2019supp1.txt
Ignored: data/Sup_replicate_values.csv
Ignored: data/TMMnormed_x.RDS
Ignored: data/TOP2Bi-24hoursGO_analysis.csv
Ignored: data/TR24counts.txt
Ignored: data/TableS10.csv
Ignored: data/TableS11.csv
Ignored: data/TableS9.csv
Ignored: data/Top2_expression.RDS
Ignored: data/Top2biresp_cluster24h.csv
Ignored: data/Var_test_list.RDS
Ignored: data/Var_test_list24.RDS
Ignored: data/Var_test_list24alt.RDS
Ignored: data/Var_test_list3.RDS
Ignored: data/Vargenes.RDS
Ignored: data/Viabilitylistfull.csv
Ignored: data/allexpressedgenes.txt
Ignored: data/allfinal3hour.RDS
Ignored: data/allgenes.txt
Ignored: data/allmatrix.RDS
Ignored: data/allmymatrix.RDS
Ignored: data/annotation_data_frame.RDS
Ignored: data/averageviabilitytable.RDS
Ignored: data/averageviabilitytable.csv
Ignored: data/avgLD50.RDS
Ignored: data/avg_LD50.RDS
Ignored: data/avg_via_table.csv
Ignored: data/backGL.txt
Ignored: data/burr_genes.RDS
Ignored: data/calcium_data.RDS
Ignored: data/clamp_summary.RDS
Ignored: data/cormotif_3hk1-8.RDS
Ignored: data/cormotif_initalK5.RDS
Ignored: data/cormotif_initialK5.RDS
Ignored: data/cormotif_initialall.RDS
Ignored: data/cormotifprobs.csv
Ignored: data/counts24hours.RDS
Ignored: data/cpmcount.RDS
Ignored: data/cpmnorm_counts.csv
Ignored: data/crispr_genes.csv
Ignored: data/ctnnt_results.txt
Ignored: data/cvd_GWAS.txt
Ignored: data/dat_cpm.RDS
Ignored: data/data_outline.txt
Ignored: data/drug_noveh1.csv
Ignored: data/efit2.RDS
Ignored: data/efit2_final.RDS
Ignored: data/efit2results.RDS
Ignored: data/ensembl_backup.RDS
Ignored: data/ensgtotal.txt
Ignored: data/filcpm_counts.RDS
Ignored: data/filenameonly.txt
Ignored: data/filtered_cpm_counts.csv
Ignored: data/filtered_raw_counts.csv
Ignored: data/filtermatrix_x.RDS
Ignored: data/folder_05top/
Ignored: data/framefun24.RDS
Ignored: data/geneDoxonlyQTL.csv
Ignored: data/gene_corr_df.RDS
Ignored: data/gene_corr_frame.RDS
Ignored: data/gene_prob_tran3h.RDS
Ignored: data/gene_probabilityk5.RDS
Ignored: data/geneset_24.RDS
Ignored: data/gostresTop2bi_ER.RDS
Ignored: data/gostresTop2bi_LR
Ignored: data/gostresTop2bi_LR.RDS
Ignored: data/gostresTop2bi_TI.RDS
Ignored: data/gostrescoNR
Ignored: data/gtex/
Ignored: data/heartgenes.csv
Ignored: data/highly_var_genelist.RDS
Ignored: data/hsa_kegg_anno.RDS
Ignored: data/individualDRCfile.RDS
Ignored: data/individual_DRC48.RDS
Ignored: data/individual_LDH48.RDS
Ignored: data/indv_noveh1.csv
Ignored: data/kegglistDEG.RDS
Ignored: data/kegglistDEG24.RDS
Ignored: data/kegglistDEG3.RDS
Ignored: data/knowfig4.csv
Ignored: data/knowfig5.csv
Ignored: data/label_list.RDS
Ignored: data/ld50_table.csv
Ignored: data/mean_vardrug1.csv
Ignored: data/mean_varframe.csv
Ignored: data/mymatrix.RDS
Ignored: data/new_ld50avg.RDS
Ignored: data/nonresponse_cluster24h.csv
Ignored: data/norm_LDH.csv
Ignored: data/norm_counts.csv
Ignored: data/old_sets/
Ignored: data/organized_drugframe.csv
Ignored: data/pca_all_anno.csv
Ignored: data/plan2plot.png
Ignored: data/plot_intv_list.RDS
Ignored: data/plot_list_DRC.RDS
Ignored: data/qval24hr.RDS
Ignored: data/qval3hr.RDS
Ignored: data/qvalueEPItemp.RDS
Ignored: data/raw_counts.csv
Ignored: data/response_cluster24h.csv
Ignored: data/sampsettrz.RDS
Ignored: data/schneider_closest_output.RDS
Ignored: data/sigVDA24.txt
Ignored: data/sigVDA3.txt
Ignored: data/sigVDX24.txt
Ignored: data/sigVDX3.txt
Ignored: data/sigVEP24.txt
Ignored: data/sigVEP3.txt
Ignored: data/sigVMT24.txt
Ignored: data/sigVMT3.txt
Ignored: data/sigVTR24.txt
Ignored: data/sigVTR3.txt
Ignored: data/siglist.RDS
Ignored: data/siglist_final.RDS
Ignored: data/siglist_old.RDS
Ignored: data/slope_table.csv
Ignored: data/supp10_24hlist.RDS
Ignored: data/supp10_3hlist.RDS
Ignored: data/supp_normLDH48.RDS
Ignored: data/supp_pca_all_anno.RDS
Ignored: data/supp_viadata.csv
Ignored: data/table3a.omar
Ignored: data/test_run_sample_list.txt
Ignored: data/testlist.txt
Ignored: data/toplistall.RDS
Ignored: data/trtonly_24h_genes.RDS
Ignored: data/trtonly_3h_genes.RDS
Ignored: data/tvl24hour.txt
Ignored: data/tvl24hourw.txt
Ignored: data/venn_code.R
Ignored: data/viability.RDS
Untracked files:
Untracked: .RDataTmp
Untracked: .RDataTmp1
Untracked: .RDataTmp2
Untracked: .RDataTmp3
Untracked: 3hr all.pdf
Untracked: Code_files_list.csv
Untracked: Data_files_list.csv
Untracked: Doxorubicin_vehicle_3_24.csv
Untracked: Doxtoplist.csv
Untracked: EPIqvalue_analysis.Rmd
Untracked: Final.sup.pdf
Untracked: GWAS_list_of_interest.xlsx
Untracked: KEGGpathwaylist.R
Untracked: NA
Untracked: OmicNavigator_learn.R
Untracked: SNP_egenes_allfiles.RDS
Untracked: SNP_frame_pdf
Untracked: SNP_frame_pdf.pdf
Untracked: SigDoxtoplist.csv
Untracked: analysis/DRC_viability_check.Rmd
Untracked: analysis/New_code_dec-23.R
Untracked: analysis/cellcycle_kegg_genes.R
Untracked: analysis/ciFIT.R
Untracked: analysis/export_to_excel.R
Untracked: analysis/featureCountsPLAY.R
Untracked: cleanupfiles_script.R
Untracked: code/biomart_gene_names.R
Untracked: code/constantcode.R
Untracked: code/corMotifcustom.R
Untracked: code/cpm_boxplot.R
Untracked: code/extracting_ggplot_data.R
Untracked: code/movingfilesto_ppl.R
Untracked: code/pearson_extract_func.R
Untracked: code/pearson_tox_extract.R
Untracked: code/plot1C.fun.R
Untracked: code/spearman_extract_func.R
Untracked: code/venndiagramcolor_control.R
Untracked: cormotif_p.post.list_4.csv
Untracked: figS1024h.pdf
Untracked: final.pdf
Untracked: individual-legenddark2.png
Untracked: installed_old.rda
Untracked: listoftranscripts
Untracked: motif_ER.txt
Untracked: motif_LR.txt
Untracked: motif_NR.txt
Untracked: motif_TI.txt
Untracked: output/ABHD8_dif_values.RDS
Untracked: output/C3orf18_dif_values.RDS
Untracked: output/Cardiotox_dif_values.RDS
Untracked: output/DNR_DEGlist.csv
Untracked: output/DNRvenn.RDS
Untracked: output/DOX_DEGlist.csv
Untracked: output/DOX_de_goi.csv
Untracked: output/DOXvenn.RDS
Untracked: output/EEF1B2_dif_values.RDS
Untracked: output/EEIG1_dif_values.RDS
Untracked: output/EPI_DEGlist.csv
Untracked: output/EPIvenn.RDS
Untracked: output/ESGN_rds.RDS
Untracked: output/FC_necela.RDS
Untracked: output/FC_necela_names.RDS
Untracked: output/FRS2_dif_values.RDS
Untracked: output/Figures/
Untracked: output/GTEXv8_gene_median_tpm.RDS
Untracked: output/GTEXv8_gene_tpm_heart_left_ventricle.RDS
Untracked: output/HDDC2_dif_values.RDS
Untracked: output/HER2_gene.RDS
Untracked: output/KEGGcellcyclegenes.RDS
Untracked: output/Knowles_S13.csv
Untracked: output/Knowles_log2cpm.csv
Untracked: output/Knowles_supp13.csv
Untracked: output/LD50tox_table.RDS
Untracked: output/MTX_DEGlist.csv
Untracked: output/MTXvenn.RDS
Untracked: output/PEX16_dif_values.RDS
Untracked: output/RASIP1_dif_values.RDS
Untracked: output/RMI1_dif_values.RDS
Untracked: output/RSID_QTL_list_full.txt
Untracked: output/SETA_analysis_reyes.RDS
Untracked: output/SGWAS_top50_order.csv
Untracked: output/SLC27A1_dif_values.RDS
Untracked: output/SLC28A3_dif_values.RDS
Untracked: output/SNP_egenes_allfiles.RDS
Untracked: output/SNP_list_ID.RDS
Untracked: output/SNP_list_full.txt
Untracked: output/SNP_supp.RDS
Untracked: output/TGFBR3L_dif_values.RDS
Untracked: output/TNS2_dif_values.RDS
Untracked: output/TOP_50SNPreffile.csv
Untracked: output/TRZ_DEGlist.csv
Untracked: output/TableS8.csv
Untracked: output/Volcanoplot_10
Untracked: output/Volcanoplot_10.RDS
Untracked: output/ZNF740_dif_values.RDS
Untracked: output/allfinal_sup10.RDS
Untracked: output/counts_v8_heart_left_ventricle_gct.RDS
Untracked: output/crisprfoldchange.RDS
Untracked: output/endocytosisgenes.csv
Untracked: output/expre7k.csv
Untracked: output/expressed_egenes_by_RSID.csv
Untracked: output/gene_corr_fig9.RDS
Untracked: output/genes.RDS
Untracked: output/legend_b.RDS
Untracked: output/motif_ERrep.RDS
Untracked: output/motif_LRrep.RDS
Untracked: output/motif_NRrep.RDS
Untracked: output/motif_TI_rep.RDS
Untracked: output/near_genes_SNP1.RDS
Untracked: output/necela_list_test.RDS
Untracked: output/necela_val_genes.RDS
Untracked: output/output-old/
Untracked: output/rank24genes.csv
Untracked: output/rank3genes.csv
Untracked: output/sequencinginformationforsupp.csv
Untracked: output/sequencinginformationforsupp.prn
Untracked: output/sigVDA24.txt
Untracked: output/sigVDA3.txt
Untracked: output/sigVDX24.txt
Untracked: output/sigVDX3.txt
Untracked: output/sigVEP24.txt
Untracked: output/sigVEP3.txt
Untracked: output/sigVMT24.txt
Untracked: output/sigVMT3.txt
Untracked: output/sigVTR24.txt
Untracked: output/sigVTR3.txt
Untracked: output/supplementary_motif_list_GO.RDS
Untracked: output/test_biomart_run.RDS
Untracked: output/toptablebydrug.RDS
Untracked: output/trop_knowles_fun.csv
Untracked: output/tvl24hour.txt
Untracked: output/x_counts.RDS
Untracked: reneebasecode.R
Unstaged changes:
Modified: analysis/DRC_analysis.Rmd
Modified: analysis/Figure4.Rmd
Modified: analysis/Figure5.Rmd
Modified: analysis/GTEx_genes.Rmd
Deleted: analysis/Knowles2019.Rmd
Modified: output/daplot.RDS
Modified: output/dxplot.RDS
Modified: output/epplot.RDS
Modified: output/mtplot.RDS
Modified: output/plan2plot.png
Modified: output/trplot.RDS
Modified: output/veplot.RDS
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/Figure7.Rmd
) and HTML
(docs/Figure7.html
) files. If you’ve configured a remote
Git repository (see ?wflow_git_remote
), click on the
hyperlinks in the table below to view the files as they were in that
past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 5a1f2a6 | reneeisnowhere | 2024-02-06 | updates to final figure |
html | 7308a2e | reneeisnowhere | 2024-02-06 | Build site. |
Rmd | d3bb5e9 | reneeisnowhere | 2024-02-06 | updates to final figure |
html | ffba2b7 | reneeisnowhere | 2023-09-28 | Build site. |
Rmd | 87a496b | reneeisnowhere | 2023-09-28 | updates to figure links and CSS script |
html | 89d0333 | reneeisnowhere | 2023-08-15 | Build site. |
Rmd | 93030ec | reneeisnowhere | 2023-08-15 | updates to Figure 7 |
html | c40aced | reneeisnowhere | 2023-07-26 | Build site. |
Rmd | 58c7965 | reneeisnowhere | 2023-07-26 | updating figures |
html | ed18a48 | reneeisnowhere | 2023-07-07 | Build site. |
Rmd | 63d054a | reneeisnowhere | 2023-07-07 | Various changes to graphs. pending Monday-renames |
html | d46bc98 | reneeisnowhere | 2023-07-06 | Build site. |
Rmd | 561369b | reneeisnowhere | 2023-07-06 | updated plots |
html | e0d8052 | reneeisnowhere | 2023-06-28 | Build site. |
Rmd | 1b201cc | reneeisnowhere | 2023-06-28 | adding foldable code |
html | 2a6d993 | reneeisnowhere | 2023-06-28 | Build site. |
Rmd | 797b4ce | reneeisnowhere | 2023-06-28 | adding in Fig7 |
library(tidyverse)
library(gridtext)
library(scales)
library(kableExtra)
library(qvalue)
library(data.table)
library(ComplexHeatmap)
library(readr)
library(limma)
library(edgeR)
drug_palc <- c("#8B006D","#DF707E","#F1B72B", "#3386DD","#707031","#41B333")
drug_pal_fact <- c("#8B006D" ,"#DF707E", "#F1B72B" ,"#3386DD", "#707031","#41B333")
cpmcounts <- readRDS("data/cpmcount.RDS")
DEG_cormotif <- readRDS("data/DEG_cormotif.RDS")
list2env(DEG_cormotif,envir=.GlobalEnv)
<environment: R_GlobalEnv>
backGL <- read.csv("data/backGL.txt", row.names =1)
col_fun1 = circlize::colorRamp2(c(-1, 3), c("white", "purple"))
col_funFC= circlize::colorRamp2(c(-2,0, 2), c("darkgreen","white", "darkorange2"))
col_funTOX = circlize::colorRamp2(c(-1,0, 1), c("darkviolet", "white","firebrick4"))
DOXrespGene <- readRDS("output/DOXreQTLs.RDS")
toplistall <- readRDS("data/toplistall.RDS")
list2env(DEG_cormotif,envir=.GlobalEnv)
<environment: R_GlobalEnv>
counts_v8_heart_left_ventricle_gct <- readRDS("output/counts_v8_heart_left_ventricle_gct.RDS")
names_gtex_genes <- counts_v8_heart_left_ventricle_gct %>%
dplyr::select(Name, Description)
gtex_counts_matrix<- counts_v8_heart_left_ventricle_gct %>%
column_to_rownames("Name") %>%
dplyr::select(!id) %>%
dplyr::select(!Description) %>%
as.matrix()
# cpm <- cpm(gtex_counts_matrix)
lcpm <- cpm(gtex_counts_matrix, log=TRUE) ### for determining the basic cutoffs
row_means <- rowMeans(lcpm)
gtex_x <- lcpm[row_means > 0,]
GTEX_heartLV_log2cpm <- gtex_x %>%
as.data.frame() %>%
mutate(Name = rownames(gtex_x)) %>%
left_join(.,names_gtex_genes, by =c("Name"))
SGWAS_order_frame <- read.csv("output/SGWAS_top50_order.csv", row.names = 1)
col_fun5 = circlize::colorRamp2(c(0, 5), c("white", "purple"))
## supplement 1
chrom_reg_Seoane <- read_csv(file = "data/Seonane2019supp1.txt",col_types = cols(...1 = col_skip()))
Seoane_2019 <- chrom_reg_Seoane[,2]
names(Seoane_2019) <- "ENTREZID"
Chrom_reg <- data.frame("entrez"=(unique(Seoane_2019$ENTREZID)))
Sup4seoane <- read.csv("output/Sup4seoane.csv", row.names = 1)
DOX_reg <- Sup4seoane %>%
filter(pval.expAnth<0.05) %>%
distinct(entrez, .keep_all = TRUE) %>%
dplyr::select(entrez)
base_egene <-readRDS("output/knowles4.RDS")
resp_egene <-readRDS("output/knowles5.RDS")
orderit <- data.frame(SYMBOL=c(SGWAS_order_frame$SYMBOL,'RARG',
'TNS2',
'ZNF740',
'SLC28A3',
'RMI1',
'EEF1B2',
'FRS2',
'HDDC2')) %>%
left_join(.,backGL) %>%
mutate(motif= if_else(ENTREZID %in% motif_ER, "ER", if_else(ENTREZID %in% motif_LR, "LR",if_else(ENTREZID %in% motif_TI, "TI", "NR" )))) %>%
mutate(chrom_gene= if_else(ENTREZID %in% Chrom_reg$entrez,"yes","no")) %>%
mutate(Dox_respegene= if_else(ENTREZID %in% resp_egene$entrezgene_id, "yes","no")) %>%
mutate(ACchrom_gene= if_else(ENTREZID %in% DOX_reg$entrez,"yes","no")) %>%
mutate(gTEX_heart=if_else(SYMBOL %in% GTEX_heartLV_log2cpm$Description, "yes","no"))
toplistall %>%
mutate(drug=factor(id, levels = c('DOX','EPI','DNR','MTX','TRZ','VEH'))) %>%
filter(ENTREZID %in% orderit$ENTREZID) %>%
filter(time =="24_hours") %>%
dplyr::select(ENTREZID , id,logFC, adj.P.Val, SYMBOL)
ENTREZID id logFC adj.P.Val SYMBOL
3958...1 3958 DNR -2.841654211 1.243290e-13 LGALS3
55020...2 55020 DNR 1.333658801 1.747225e-12 TTC38
5095...3 5095 DNR 1.071448603 1.388146e-07 PCCA
29899...4 29899 DNR 1.954225576 4.986630e-07 GPSM2
23371...5 23371 DNR 1.604978233 1.056163e-06 TNS2
57161...6 57161 DNR -2.383146876 3.370044e-06 PELI2
283337...7 283337 DNR -0.579733508 1.525722e-04 ZNF740
150383...8 150383 DNR 1.104262721 1.726928e-04 CDPF1
80856...9 80856 DNR 0.822616727 3.110247e-04 LNPK
4023...10 4023 DNR 1.549451664 5.464607e-04 LPL
51020...11 51020 DNR 0.837500708 1.303926e-03 HDDC2
23262...12 23262 DNR 0.672772048 1.871912e-03 PPIP5K2
10818...13 10818 DNR -0.546865539 1.991410e-03 FRS2
6272...14 6272 DNR 0.621888001 5.362112e-03 SORT1
5916...15 5916 DNR -1.329791599 7.072597e-03 RARG
54826...16 54826 DNR 0.590225431 9.667914e-03 GIN1
78996...17 78996 DNR -0.386375935 1.795971e-02 CYREN
9620...18 9620 DNR 0.363295608 3.669460e-02 CELSR1
80010...19 80010 DNR 0.671889247 4.031601e-02 RMI1
23151...20 23151 DNR 0.436443420 4.741931e-02 GRAMD4
23155...21 23155 DNR 0.337151049 5.197844e-02 CLCC1
64078...22 64078 DNR 1.330462721 5.950696e-02 SLC28A3
10499...23 10499 DNR 0.411899518 6.955554e-02 NCOA2
54477...24 54477 DNR 0.487103345 7.152302e-02 PLEKHA5
23327...25 23327 DNR -0.256622161 8.379995e-02 NEDD4L
4692...26 4692 DNR 0.226204661 1.454533e-01 NDN
57110...27 57110 DNR -0.448716677 3.213072e-01 PLAAT1
344595...28 344595 DNR -0.399962237 4.100997e-01 DUBR
1933...29 1933 DNR -0.107304755 4.912870e-01 EEF1B2
5066...30 5066 DNR 0.154685819 5.472580e-01 PAM
323...31 323 DNR -0.210918044 5.566906e-01 APBB2
80059...32 80059 DNR -0.239094603 6.889705e-01 LRRTM4
8803...33 8803 DNR 0.080349938 7.278560e-01 SUCLA2
8214...34 8214 DNR -0.108231532 7.767081e-01 DGCR6
7991...35 7991 DNR 0.040113972 8.234825e-01 TUSC3
108...36 108 DNR -0.126695676 8.273045e-01 ADCY2
79730...37 79730 DNR -0.057772199 9.021996e-01 NSUN7
11128...38 11128 DNR 0.029517711 9.059731e-01 POLR3A
3958...39 3958 DOX -2.592937478 2.490015e-12 LGALS3
55020...40 55020 DOX 1.283014820 2.916892e-12 TTC38
29899...41 29899 DOX 2.518139384 2.101681e-09 GPSM2
5095...42 5095 DOX 1.010845341 2.818499e-07 PCCA
23371...43 23371 DOX 1.598507639 6.706429e-07 TNS2
57161...44 57161 DOX -2.341492097 3.836758e-06 PELI2
4023...45 4023 DOX 1.808675205 7.124618e-05 LPL
80856...46 80856 DOX 0.895190712 8.678073e-05 LNPK
10818...47 10818 DOX -0.676539058 1.291338e-04 FRS2
78996...48 78996 DOX -0.537877803 7.555844e-04 CYREN
150383...49 150383 DOX 0.858362938 2.193138e-03 CDPF1
9620...50 9620 DOX 0.517275591 2.869762e-03 CELSR1
51020...51 51020 DOX 0.701624821 5.731184e-03 HDDC2
283337...52 283337 DOX -0.381694054 1.117693e-02 ZNF740
23155...53 23155 DOX 0.405344826 1.791996e-02 CLCC1
23151...54 23151 DOX 0.508471630 1.886110e-02 GRAMD4
6272...55 6272 DOX 0.534740395 1.924261e-02 SORT1
23262...56 23262 DOX 0.461885237 2.888855e-02 PPIP5K2
64078...57 64078 DOX 1.500098762 2.987324e-02 SLC28A3
80010...58 80010 DOX 0.668904577 3.576733e-02 RMI1
5916...59 5916 DOX -0.964405340 5.402876e-02 RARG
54826...60 54826 DOX 0.421260779 5.998781e-02 GIN1
1933...61 1933 DOX -0.212731820 1.537205e-01 EEF1B2
7991...62 7991 DOX -0.205234135 2.053194e-01 TUSC3
54477...63 54477 DOX 0.334744068 2.250581e-01 PLEKHA5
79730...64 79730 DOX 0.476855272 2.404724e-01 NSUN7
344595...65 344595 DOX -0.524001048 2.637491e-01 DUBR
80059...66 80059 DOX -0.569911090 2.893850e-01 LRRTM4
4692...67 4692 DOX 0.144561267 3.736745e-01 NDN
8214...68 8214 DOX -0.302754712 3.788465e-01 DGCR6
57110...69 57110 DOX -0.354560827 4.421703e-01 PLAAT1
10499...70 10499 DOX 0.147512070 5.431318e-01 NCOA2
23327...71 23327 DOX -0.080177636 6.273533e-01 NEDD4L
8803...72 8803 DOX -0.087400124 7.094227e-01 SUCLA2
11128...73 11128 DOX 0.060765550 7.943625e-01 POLR3A
108...74 108 DOX 0.127672688 8.270659e-01 ADCY2
5066...75 5066 DOX 0.059664456 8.344395e-01 PAM
323...76 323 DOX -0.031367303 9.393574e-01 APBB2
3958...77 3958 EPI -2.258936236 2.519057e-10 LGALS3
55020...78 55020 EPI 0.974047987 7.331358e-09 TTC38
57161...79 57161 EPI -2.714417489 2.189093e-07 PELI2
29899...80 29899 EPI 1.863235071 1.590451e-06 GPSM2
23371...81 23371 EPI 1.548244317 2.483790e-06 TNS2
5095...82 5095 EPI 0.829217065 1.522752e-05 PCCA
9620...83 9620 EPI 0.673682504 1.442416e-04 CELSR1
10818...84 10818 EPI -0.662974585 2.169251e-04 FRS2
80856...85 80856 EPI 0.839945811 2.618033e-04 LNPK
150383...86 150383 EPI 0.942381848 1.099590e-03 CDPF1
23151...87 23151 EPI 0.734875425 1.137112e-03 GRAMD4
51020...88 51020 EPI 0.832885435 1.421275e-03 HDDC2
4023...89 4023 EPI 1.351101119 2.328703e-03 LPL
54826...90 54826 EPI 0.674858946 3.507401e-03 GIN1
23262...91 23262 EPI 0.602541437 5.337053e-03 PPIP5K2
283337...92 283337 EPI -0.415051660 7.118210e-03 ZNF740
5916...93 5916 EPI -1.219583078 1.479648e-02 RARG
64078...94 64078 EPI 1.702459586 1.707977e-02 SLC28A3
23155...95 23155 EPI 0.369459458 3.478725e-02 CLCC1
6272...96 6272 EPI 0.464185845 4.419093e-02 SORT1
54477...97 54477 EPI 0.512315022 6.054740e-02 PLEKHA5
78996...98 78996 EPI -0.300441979 7.403190e-02 CYREN
7991...99 7991 EPI -0.242241759 1.322443e-01 TUSC3
80010...100 80010 EPI 0.469909001 1.524626e-01 RMI1
1933...101 1933 EPI -0.213535720 1.551221e-01 EEF1B2
11128...102 11128 EPI 0.224307657 2.966829e-01 POLR3A
79730...103 79730 EPI 0.417825538 3.192457e-01 NSUN7
4692...104 4692 EPI -0.153538531 3.515660e-01 NDN
8214...105 8214 EPI -0.277219655 4.398229e-01 DGCR6
57110...106 57110 EPI -0.339243025 4.802483e-01 PLAAT1
323...107 323 EPI -0.187249253 6.196852e-01 APBB2
23327...108 23327 EPI -0.075188817 6.598565e-01 NEDD4L
10499...109 10499 EPI 0.100464458 7.011245e-01 NCOA2
344595...110 344595 EPI -0.182858257 7.439904e-01 DUBR
8803...111 8803 EPI -0.071967777 7.700056e-01 SUCLA2
80059...112 80059 EPI -0.148755480 8.211226e-01 LRRTM4
5066...113 5066 EPI -0.045912799 8.793958e-01 PAM
108...114 108 EPI -0.039274665 9.511661e-01 ADCY2
29899...115 29899 MTX 1.934044382 3.815931e-06 GPSM2
4023...116 4023 MTX 1.451134843 5.826444e-03 LPL
80010...117 80010 MTX 1.092226550 6.604137e-03 RMI1
5095...118 5095 MTX 0.577769680 7.822416e-03 PCCA
80856...119 80856 MTX 0.685663398 1.284470e-02 LNPK
283337...120 283337 MTX -0.280222769 1.954044e-01 ZNF740
10818...121 10818 MTX -0.303886126 2.378802e-01 FRS2
79730...122 79730 MTX 0.628036510 2.868955e-01 NSUN7
3958...123 3958 MTX -0.499180352 3.094334e-01 LGALS3
51020...124 51020 MTX 0.366332291 3.373271e-01 HDDC2
23327...125 23327 MTX 0.198830941 3.917168e-01 NEDD4L
9620...126 9620 MTX 0.208898350 4.712695e-01 CELSR1
64078...127 64078 MTX 0.768540550 4.758212e-01 SLC28A3
57161...128 57161 MTX -0.611530252 5.080329e-01 PELI2
5066...129 5066 MTX 0.250853051 5.499338e-01 PAM
23151...130 23151 MTX 0.209526820 5.825203e-01 GRAMD4
23155...131 23155 MTX 0.164554919 5.877302e-01 CLCC1
8803...132 8803 MTX 0.173292448 6.485778e-01 SUCLA2
80059...133 80059 MTX -0.403073184 6.821231e-01 LRRTM4
6272...134 6272 MTX 0.179183592 6.859679e-01 SORT1
5916...135 5916 MTX -0.340441408 7.425170e-01 RARG
55020...136 55020 MTX 0.085053540 7.601342e-01 TTC38
150383...137 150383 MTX -0.154959612 7.638427e-01 CDPF1
7991...138 7991 MTX 0.093568355 7.664325e-01 TUSC3
108...139 108 MTX 0.297466826 7.704286e-01 ADCY2
57110...140 57110 MTX 0.264958653 7.734792e-01 PLAAT1
8214...141 8214 MTX 0.189812119 7.812516e-01 DGCR6
1933...142 1933 MTX 0.074340382 8.149139e-01 EEF1B2
54826...143 54826 MTX -0.107587669 8.166223e-01 GIN1
23371...144 23371 MTX 0.132833588 8.258590e-01 TNS2
78996...145 78996 MTX -0.079577280 8.278189e-01 CYREN
23262...146 23262 MTX 0.094249849 8.424378e-01 PPIP5K2
323...147 323 MTX 0.133742960 8.617852e-01 APBB2
54477...148 54477 MTX 0.102791888 8.679409e-01 PLEKHA5
11128...149 11128 MTX -0.065059234 8.900008e-01 POLR3A
10499...150 10499 MTX 0.065432833 9.015410e-01 NCOA2
344595...151 344595 MTX -0.094804211 9.359175e-01 DUBR
4692...152 4692 MTX 0.024324107 9.507869e-01 NDN
23371...153 23371 TRZ -0.360682790 9.999716e-01 TNS2
283337...154 283337 TRZ -0.182311739 9.999716e-01 ZNF740
5916...155 5916 TRZ -0.416339236 9.999716e-01 RARG
29899...156 29899 TRZ 0.234391483 9.999716e-01 GPSM2
4023...157 4023 TRZ 0.314414654 9.999716e-01 LPL
54826...158 54826 TRZ -0.147747416 9.999716e-01 GIN1
80856...159 80856 TRZ 0.154476640 9.999716e-01 LNPK
23151...160 23151 TRZ -0.128233102 9.999716e-01 GRAMD4
79730...161 79730 TRZ -0.218396111 9.999716e-01 NSUN7
9620...162 9620 TRZ -0.105210839 9.999716e-01 CELSR1
64078...163 64078 TRZ -0.302421643 9.999716e-01 SLC28A3
78996...164 78996 TRZ -0.077524620 9.999716e-01 CYREN
57161...165 57161 TRZ 0.238798361 9.999716e-01 PELI2
150383...166 150383 TRZ -0.102010613 9.999716e-01 CDPF1
323...167 323 TRZ -0.127795059 9.999716e-01 APBB2
51020...168 51020 TRZ 0.096587761 9.999716e-01 HDDC2
55020...169 55020 TRZ -0.049872370 9.999716e-01 TTC38
10499...170 10499 TRZ -0.076894497 9.999716e-01 NCOA2
1933...171 1933 TRZ 0.045717271 9.999716e-01 EEF1B2
6272...172 6272 TRZ 0.072173304 9.999716e-01 SORT1
80010...173 80010 TRZ 0.089587489 9.999716e-01 RMI1
3958...174 3958 TRZ -0.086684248 9.999716e-01 LGALS3
80059...175 80059 TRZ 0.137665553 9.999716e-01 LRRTM4
23327...176 23327 TRZ -0.037600446 9.999716e-01 NEDD4L
8803...177 8803 TRZ 0.047787071 9.999716e-01 SUCLA2
5095...178 5095 TRZ -0.035722392 9.999716e-01 PCCA
23262...179 23262 TRZ 0.043344764 9.999716e-01 PPIP5K2
8214...180 8214 TRZ 0.066369745 9.999716e-01 DGCR6
10818...181 10818 TRZ 0.034157048 9.999716e-01 FRS2
7991...182 7991 TRZ -0.028941499 9.999716e-01 TUSC3
4692...183 4692 TRZ -0.023636849 9.999716e-01 NDN
11128...184 11128 TRZ 0.028833971 9.999716e-01 POLR3A
54477...185 54477 TRZ -0.035791323 9.999716e-01 PLEKHA5
108...186 108 TRZ -0.043025639 9.999716e-01 ADCY2
57110...187 57110 TRZ 0.031961542 9.999716e-01 PLAAT1
23155...188 23155 TRZ -0.005764121 9.999716e-01 CLCC1
344595...189 344595 TRZ -0.007991521 9.999716e-01 DUBR
5066...190 5066 TRZ -0.001493139 9.999716e-01 PAM
GWASabsFCsig <-
toplistall %>%
mutate(drug=factor(id, levels = c('DOX','EPI','DNR','MTX','TRZ','VEH'))) %>%
filter(ENTREZID %in% orderit$ENTREZID) %>%
filter(time =="24_hours") %>%
dplyr::select(ENTREZID , id,logFC, adj.P.Val, SYMBOL) %>%
pivot_wider(id_cols=id,
names_from = SYMBOL,
values_from =adj.P.Val)
gwas_sig_mat <- GWASabsFCsig %>%
column_to_rownames(var="id") %>%
dplyr::select(orderit$SYMBOL) %>%
as.matrix()
GWASabsFC <- toplistall %>%
# filter(id !="TRZ") %>%
filter(time=="24_hours") %>%
mutate(logFC= logFC*(-1)) %>%
filter(ENTREZID %in% orderit$ENTREZID) %>%
dplyr::select(SYMBOL ,time, id, logFC) %>%
pivot_wider(id_cols=id,
names_from = SYMBOL,
values_from = logFC) %>%
column_to_rownames(var="id") %>%
dplyr::select(orderit$SYMBOL) %>%
as.matrix()
study_anno <- data.frame(Study=c(rep("GWAS",35),rep("TWAS",3)),motif=orderit$motif,chrom_gene=orderit$chrom_gene,Dox_respegene=orderit$Dox_respegene, ACchrom_gene=orderit$ACchrom_gene,gTEX_heart=orderit$gTEX_heart)
rownames(study_anno) <- colnames(GWASabsFC)
ht <- HeatmapAnnotation(df = study_anno,
col = list(Study=c("GWAS"="darkorange","TWAS"= "blueviolet"),
motif = c("LR"="#00BFC4", "NR"="#C77CFF", "ER"="#F8766D", "TI"="#7CAE00"),
chrom_gene=c("yes"="darkred","no"="pink"),
Dox_respegene=c("yes"="darkred","no"="pink"),
ACchrom_gene=c("yes"="darkred","no"="pink"),
gTEX_heart=c("yes"="darkred","no"="pink")))
Heatmap(GWASabsFC, name = "Fold change\nvalues",
cluster_rows = FALSE,
cluster_columns = FALSE,
row_names_side = "left",
col = col_funFC,
row_order = c('DOX','EPI','DNR', 'MTX','TRZ'),
column_title = "24 hours Fold Change of AC-toxicity associated loci",
column_title_side = "top",
column_title_gp = gpar(fontsize = 16, fontface = "bold"),
column_order= orderit$SYMBOL,
bottom_annotation = ht,
column_names_rot = 90,
column_names_gp = gpar(fontsize = 12,fontface="italic"),
column_names_centered =TRUE,
cell_fun = function(j, i, x, y, width, height, fill) {
if(gwas_sig_mat[i, j] <0.05)
grid.text("*", x, y, gp = gpar(fontsize = 20))
})
Version | Author | Date |
---|---|---|
7308a2e | reneeisnowhere | 2024-02-06 |
GWASabsFCsig_3 <-
toplistall %>%
mutate(drug=factor(id, levels = c('DOX','EPI','DNR','MTX','TRZ','VEH'))) %>%
filter(ENTREZID %in% orderit$ENTREZID) %>%
filter(time =="3_hours") %>%
dplyr::select(ENTREZID , id,logFC, adj.P.Val, SYMBOL) %>%
pivot_wider(id_cols=id,
names_from = SYMBOL,
values_from =adj.P.Val)
gwas_sig_mat_3 <- GWASabsFCsig_3 %>%
column_to_rownames(var="id") %>%
dplyr::select(orderit$SYMBOL) %>%
as.matrix()
GWASabsFC_3 <- toplistall %>%
# filter(id !="TRZ") %>%
filter(time=="3_hours") %>%
mutate(logFC= logFC*(-1)) %>%
filter(ENTREZID %in% orderit$ENTREZID) %>%
dplyr::select(SYMBOL ,time, id, logFC) %>%
pivot_wider(id_cols=id,
names_from = SYMBOL,
values_from = logFC) %>%
column_to_rownames(var="id") %>%
dplyr::select(orderit$SYMBOL) %>%
as.matrix()
# study_anno <- data.frame(Study=c(rep("GWAS",35),rep("TWAS",3)),motif=orderit$motif,chrom_gene=orderit$chrom_gene,Dox_respegene=orderit$Dox_respegene, ACchrom_gene=orderit$ACchrom_gene,gTEX_heart=orderit$gTEX_heart)
# rownames(study_anno) <- colnames(GWASabsFC)
# ht <- HeatmapAnnotation(df = study_anno,
# col = list(Study=c("GWAS"="darkorange","TWAS"= "blueviolet"),
# motif = c("LR"="#00BFC4", "NR"="#C77CFF", "ER"="#F8766D", "TI"="#7CAE00"),
# chrom_gene=c("yes"="darkred","no"="pink"),
# Dox_respegene=c("yes"="darkred","no"="pink"),
# ACchrom_gene=c("yes"="darkred","no"="pink"),
# gTEX_heart=c("yes"="darkred","no"="pink")))
Heatmap(GWASabsFC_3, name = "Fold change\nvalues",
cluster_rows = FALSE,
cluster_columns = FALSE,
row_names_side = "left",
col = col_funFC,
row_order = c('DOX','EPI','DNR', 'MTX','TRZ'),
column_title = "3 hours Log2 Foldchange of AC-toxicity associated loci",
column_title_side = "top",
column_title_gp = gpar(fontsize = 16, fontface = "bold"),
column_order= orderit$SYMBOL,
bottom_annotation = ht,
column_names_rot = 90,
column_names_gp = gpar(fontsize = 12,fontface="italic"),
column_names_centered =TRUE,
cell_fun = function(j, i, x, y, width, height, fill) {
if(gwas_sig_mat_3[i, j] <0.05)
grid.text("*", x, y, gp = gpar(fontsize = 20))
})
Version | Author | Date |
---|---|---|
7308a2e | reneeisnowhere | 2024-02-06 |
More analysis GWAS and TWAS SNPs found in the Schneider data at this link.
sessionInfo()
R version 4.3.1 (2023-06-16 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19045)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.utf8
[2] LC_CTYPE=English_United States.utf8
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.utf8
time zone: America/Chicago
tzcode source: internal
attached base packages:
[1] grid stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] edgeR_3.42.4 limma_3.56.2 ComplexHeatmap_2.16.0
[4] data.table_1.14.8 qvalue_2.32.0 kableExtra_1.3.4
[7] scales_1.3.0 gridtext_0.1.5 lubridate_1.9.3
[10] forcats_1.0.0 stringr_1.5.0 dplyr_1.1.3
[13] purrr_1.0.2 readr_2.1.4 tidyr_1.3.0
[16] tibble_3.2.1 ggplot2_3.4.4 tidyverse_2.0.0
[19] workflowr_1.7.1
loaded via a namespace (and not attached):
[1] tidyselect_1.2.0 viridisLite_0.4.2 fastmap_1.1.1
[4] promises_1.2.1 digest_0.6.33 timechange_0.2.0
[7] lifecycle_1.0.4 cluster_2.1.4 processx_3.8.2
[10] magrittr_2.0.3 compiler_4.3.1 rlang_1.1.2
[13] sass_0.4.7 tools_4.3.1 utf8_1.2.4
[16] yaml_2.3.7 knitr_1.45 bit_4.0.5
[19] plyr_1.8.9 xml2_1.3.5 RColorBrewer_1.1-3
[22] withr_3.0.0 BiocGenerics_0.46.0 stats4_4.3.1
[25] fansi_1.0.5 git2r_0.32.0 colorspace_2.1-0
[28] iterators_1.0.14 cli_3.6.1 rmarkdown_2.25
[31] crayon_1.5.2 generics_0.1.3 rstudioapi_0.15.0
[34] httr_1.4.7 reshape2_1.4.4 tzdb_0.4.0
[37] rjson_0.2.21 cachem_1.0.8 splines_4.3.1
[40] rvest_1.0.3 parallel_4.3.1 matrixStats_1.1.0
[43] vctrs_0.6.4 webshot_0.5.5 jsonlite_1.8.7
[46] callr_3.7.3 IRanges_2.34.1 hms_1.1.3
[49] GetoptLong_1.0.5 S4Vectors_0.38.2 bit64_4.0.5
[52] clue_0.3-65 magick_2.8.1 systemfonts_1.0.5
[55] locfit_1.5-9.8 foreach_1.5.2 jquerylib_0.1.4
[58] glue_1.6.2 codetools_0.2-19 ps_1.7.5
[61] shape_1.4.6 stringi_1.7.12 gtable_0.3.4
[64] later_1.3.1 munsell_0.5.0 pillar_1.9.0
[67] htmltools_0.5.7 circlize_0.4.15 R6_2.5.1
[70] doParallel_1.0.17 rprojroot_2.0.4 vroom_1.6.5
[73] lattice_0.22-5 evaluate_0.23 highr_0.10
[76] png_0.1-8 httpuv_1.6.12 bslib_0.6.1
[79] Rcpp_1.0.11 svglite_2.1.2 whisker_0.4.1
[82] xfun_0.41 fs_1.6.3 getPass_0.2-2
[85] pkgconfig_2.0.3 GlobalOptions_0.1.2