Last updated: 2025-05-15

Checks: 7 0

Knit directory: ATAC_learning/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20231016) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version d49fd7c. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/ACresp_SNP_table.csv
    Ignored:    data/ARR_SNP_table.csv
    Ignored:    data/All_merged_peaks.tsv
    Ignored:    data/CAD_gwas_dataframe.RDS
    Ignored:    data/CTX_SNP_table.csv
    Ignored:    data/Collapsed_expressed_NG_peak_table.csv
    Ignored:    data/DEG_toplist_sep_n45.RDS
    Ignored:    data/FRiP_first_run.txt
    Ignored:    data/Final_four_data/
    Ignored:    data/Frip_1_reads.csv
    Ignored:    data/Frip_2_reads.csv
    Ignored:    data/Frip_3_reads.csv
    Ignored:    data/Frip_4_reads.csv
    Ignored:    data/Frip_5_reads.csv
    Ignored:    data/Frip_6_reads.csv
    Ignored:    data/GO_KEGG_analysis/
    Ignored:    data/HF_SNP_table.csv
    Ignored:    data/Ind1_75DA24h_dedup_peaks.csv
    Ignored:    data/Ind1_TSS_peaks.RDS
    Ignored:    data/Ind1_firstfragment_files.txt
    Ignored:    data/Ind1_fragment_files.txt
    Ignored:    data/Ind1_peaks_list.RDS
    Ignored:    data/Ind1_summary.txt
    Ignored:    data/Ind2_TSS_peaks.RDS
    Ignored:    data/Ind2_fragment_files.txt
    Ignored:    data/Ind2_peaks_list.RDS
    Ignored:    data/Ind2_summary.txt
    Ignored:    data/Ind3_TSS_peaks.RDS
    Ignored:    data/Ind3_fragment_files.txt
    Ignored:    data/Ind3_peaks_list.RDS
    Ignored:    data/Ind3_summary.txt
    Ignored:    data/Ind4_79B24h_dedup_peaks.csv
    Ignored:    data/Ind4_TSS_peaks.RDS
    Ignored:    data/Ind4_V24h_fraglength.txt
    Ignored:    data/Ind4_fragment_files.txt
    Ignored:    data/Ind4_fragment_filesN.txt
    Ignored:    data/Ind4_peaks_list.RDS
    Ignored:    data/Ind4_summary.txt
    Ignored:    data/Ind5_TSS_peaks.RDS
    Ignored:    data/Ind5_fragment_files.txt
    Ignored:    data/Ind5_fragment_filesN.txt
    Ignored:    data/Ind5_peaks_list.RDS
    Ignored:    data/Ind5_summary.txt
    Ignored:    data/Ind6_TSS_peaks.RDS
    Ignored:    data/Ind6_fragment_files.txt
    Ignored:    data/Ind6_peaks_list.RDS
    Ignored:    data/Ind6_summary.txt
    Ignored:    data/Knowles_4.RDS
    Ignored:    data/Knowles_5.RDS
    Ignored:    data/Knowles_6.RDS
    Ignored:    data/LiSiLTDNRe_TE_df.RDS
    Ignored:    data/MI_gwas.RDS
    Ignored:    data/SNP_GWAS_PEAK_MRC_id
    Ignored:    data/SNP_GWAS_PEAK_MRC_id.csv
    Ignored:    data/SNP_gene_cat_list.tsv
    Ignored:    data/SNP_supp_schneider.RDS
    Ignored:    data/TE_info/
    Ignored:    data/TFmapnames.RDS
    Ignored:    data/all_TSSE_scores.RDS
    Ignored:    data/all_four_filtered_counts.txt
    Ignored:    data/aln_run1_results.txt
    Ignored:    data/anno_ind1_DA24h.RDS
    Ignored:    data/anno_ind4_V24h.RDS
    Ignored:    data/annotated_gwas_SNPS.csv
    Ignored:    data/background_n45_he_peaks.RDS
    Ignored:    data/cardiac_muscle_FRIP.csv
    Ignored:    data/cardiomyocyte_FRIP.csv
    Ignored:    data/col_ng_peak.csv
    Ignored:    data/cormotif_full_4_run.RDS
    Ignored:    data/cormotif_full_4_run_he.RDS
    Ignored:    data/cormotif_full_6_run.RDS
    Ignored:    data/cormotif_full_6_run_he.RDS
    Ignored:    data/cormotif_probability_45_list.csv
    Ignored:    data/cormotif_probability_45_list_he.csv
    Ignored:    data/cormotif_probability_all_6_list.csv
    Ignored:    data/cormotif_probability_all_6_list_he.csv
    Ignored:    data/datasave.RDS
    Ignored:    data/embryo_heart_FRIP.csv
    Ignored:    data/enhancer_list_ENCFF126UHK.bed
    Ignored:    data/enhancerdata/
    Ignored:    data/filt_Peaks_efit2.RDS
    Ignored:    data/filt_Peaks_efit2_bl.RDS
    Ignored:    data/filt_Peaks_efit2_n45.RDS
    Ignored:    data/first_Peaksummarycounts.csv
    Ignored:    data/first_run_frag_counts.txt
    Ignored:    data/full_bedfiles/
    Ignored:    data/gene_ref.csv
    Ignored:    data/gwas_1_dataframe.RDS
    Ignored:    data/gwas_2_dataframe.RDS
    Ignored:    data/gwas_3_dataframe.RDS
    Ignored:    data/gwas_4_dataframe.RDS
    Ignored:    data/gwas_5_dataframe.RDS
    Ignored:    data/high_conf_peak_counts.csv
    Ignored:    data/high_conf_peak_counts.txt
    Ignored:    data/high_conf_peaks_bl_counts.txt
    Ignored:    data/high_conf_peaks_counts.txt
    Ignored:    data/hits_files/
    Ignored:    data/hyper_files/
    Ignored:    data/hypo_files/
    Ignored:    data/ind1_DA24hpeaks.RDS
    Ignored:    data/ind1_TSSE.RDS
    Ignored:    data/ind2_TSSE.RDS
    Ignored:    data/ind3_TSSE.RDS
    Ignored:    data/ind4_TSSE.RDS
    Ignored:    data/ind4_V24hpeaks.RDS
    Ignored:    data/ind5_TSSE.RDS
    Ignored:    data/ind6_TSSE.RDS
    Ignored:    data/initial_complete_stats_run1.txt
    Ignored:    data/left_ventricle_FRIP.csv
    Ignored:    data/median_24_lfc.RDS
    Ignored:    data/median_3_lfc.RDS
    Ignored:    data/mergedPeads.gff
    Ignored:    data/mergedPeaks.gff
    Ignored:    data/motif_list_full
    Ignored:    data/motif_list_n45
    Ignored:    data/motif_list_n45.RDS
    Ignored:    data/multiqc_fastqc_run1.txt
    Ignored:    data/multiqc_fastqc_run2.txt
    Ignored:    data/multiqc_genestat_run1.txt
    Ignored:    data/multiqc_genestat_run2.txt
    Ignored:    data/my_hc_filt_counts.RDS
    Ignored:    data/my_hc_filt_counts_n45.RDS
    Ignored:    data/n45_bedfiles/
    Ignored:    data/n45_files
    Ignored:    data/other_papers/
    Ignored:    data/peakAnnoList_1.RDS
    Ignored:    data/peakAnnoList_2.RDS
    Ignored:    data/peakAnnoList_24_full.RDS
    Ignored:    data/peakAnnoList_24_n45.RDS
    Ignored:    data/peakAnnoList_3.RDS
    Ignored:    data/peakAnnoList_3_full.RDS
    Ignored:    data/peakAnnoList_3_n45.RDS
    Ignored:    data/peakAnnoList_4.RDS
    Ignored:    data/peakAnnoList_5.RDS
    Ignored:    data/peakAnnoList_6.RDS
    Ignored:    data/peakAnnoList_Eight.RDS
    Ignored:    data/peakAnnoList_full_motif.RDS
    Ignored:    data/peakAnnoList_n45_motif.RDS
    Ignored:    data/siglist_full.RDS
    Ignored:    data/siglist_n45.RDS
    Ignored:    data/summarized_peaks_dataframe.txt
    Ignored:    data/summary_peakIDandReHeat.csv
    Ignored:    data/test.list.RDS
    Ignored:    data/testnames.txt
    Ignored:    data/toplist_6.RDS
    Ignored:    data/toplist_full.RDS
    Ignored:    data/toplist_full_DAR_6.RDS
    Ignored:    data/toplist_n45.RDS
    Ignored:    data/trimmed_seq_length.csv
    Ignored:    data/unclassified_full_set_peaks.RDS
    Ignored:    data/unclassified_n45_set_peaks.RDS
    Ignored:    data/xstreme/

Untracked files:
    Untracked:  RNA_seq_integration.Rmd
    Untracked:  analysis/Diagnosis-tmm.Rmd
    Untracked:  analysis/Expressed_RNA_associations.Rmd
    Untracked:  analysis/H3K27ac_integration_noM.Rmd
    Untracked:  analysis/LFC_corr.Rmd
    Untracked:  analysis/SVA.Rmd
    Untracked:  analysis/Tan2020.Rmd
    Untracked:  analysis/making_master_peaks_list.Rmd
    Untracked:  analysis/my_hc_filt_counts.csv
    Untracked:  code/IGV_snapshot_code.R
    Untracked:  code/LongDARlist.R
    Untracked:  code/just_for_Fun.R
    Untracked:  output/cormotif_probability_45_list.csv
    Untracked:  output/cormotif_probability_all_6_list.csv
    Untracked:  setup.RData

Unstaged changes:
    Modified:   ATAC_learning.Rproj
    Modified:   analysis/AF_HF_SNPs.Rmd
    Modified:   analysis/Cardiotox_SNPs.Rmd
    Modified:   analysis/Enhancer_enrichment.Rmd
    Modified:   analysis/H3K27ac_cormotif.Rmd
    Modified:   analysis/Jaspar_motif.Rmd
    Modified:   analysis/Jaspar_motif_ff.Rmd
    Modified:   analysis/RNA_seq_integration.Rmd
    Modified:   analysis/TSS_and_CUG.Rmd
    Modified:   analysis/final_four_analysis.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Cormotif_analysis.Rmd) and HTML (docs/Cormotif_analysis.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd d49fd7c reneeisnowhere 2025-05-15 rastr updates and spelling
html 5e6e462 reneeisnowhere 2025-05-07 Build site.
Rmd d969893 reneeisnowhere 2025-05-07 updating new pages
Rmd 2db35c7 reneeisnowhere 2025-05-07 updates to analysis
html 8af2b68 reneeisnowhere 2025-05-06 Build site.
Rmd 02654a0 reneeisnowhere 2025-05-06 updates to analysis
html ac1a2a6 reneeisnowhere 2025-05-06 Build site.
Rmd 43a493f reneeisnowhere 2025-05-06 updates to analysis

library(tidyverse)
library(kableExtra)
library(broom)
library(RColorBrewer)
library(ChIPseeker)
library("TxDb.Hsapiens.UCSC.hg38.knownGene")
library("org.Hs.eg.db")
library(rtracklayer)
library(edgeR)
library(ggfortify)
library(limma)
library(readr)
library(BiocGenerics)
library(gridExtra)
library(VennDiagram)
library(scales)
library(Cormotif)
library(BiocParallel)
library(ggpubr)
library(devtools)
library(eulerr)
library(genomation)
library(ggsignif)
library(plyranges)
library(ggrepel)
library(ComplexHeatmap)
library(cowplot)
library(smplot2)
## Fit limma model using code as it is found in the original cormotif code. It has
## only been modified to add names to the matrix of t values, as well as the
## limma fits

limmafit.default <- function(exprs,groupid,compid) {
  limmafits  <- list()
  compnum    <- nrow(compid)
  genenum    <- nrow(exprs)
  limmat     <- matrix(0,genenum,compnum)
  limmas2    <- rep(0,compnum)
  limmadf    <- rep(0,compnum)
  limmav0    <- rep(0,compnum)
  limmag1num <- rep(0,compnum)
  limmag2num <- rep(0,compnum)

  rownames(limmat)  <- rownames(exprs)
  colnames(limmat)  <- rownames(compid)
  names(limmas2)    <- rownames(compid)
  names(limmadf)    <- rownames(compid)
  names(limmav0)    <- rownames(compid)
  names(limmag1num) <- rownames(compid)
  names(limmag2num) <- rownames(compid)

  for(i in 1:compnum) {
    selid1 <- which(groupid == compid[i,1])
    selid2 <- which(groupid == compid[i,2])
    eset   <- new("ExpressionSet", exprs=cbind(exprs[,selid1],exprs[,selid2]))
    g1num  <- length(selid1)
    g2num  <- length(selid2)
    designmat <- cbind(base=rep(1,(g1num+g2num)), delta=c(rep(0,g1num),rep(1,g2num)))
    fit <- lmFit(eset,designmat)
    fit <- eBayes(fit)
    limmat[,i] <- fit$t[,2]
    limmas2[i] <- fit$s2.prior
    limmadf[i] <- fit$df.prior
    limmav0[i] <- fit$var.prior[2]
    limmag1num[i] <- g1num
    limmag2num[i] <- g2num
    limmafits[[i]] <- fit

    # log odds
    # w<-sqrt(1+fit$var.prior[2]/(1/g1num+1/g2num))
    # log(0.99)+dt(fit$t[1,2],g1num+g2num-2+fit$df.prior,log=TRUE)-log(0.01)-dt(fit$t[1,2]/w, g1num+g2num-2+fit$df.prior, log=TRUE)+log(w)
  }
  names(limmafits) <- rownames(compid)
  limmacompnum<-nrow(compid)
  result<-list(t       = limmat,
               v0      = limmav0,
               df0     = limmadf,
               s20     = limmas2,
               g1num   = limmag1num,
               g2num   = limmag2num,
               compnum = limmacompnum,
               fits    = limmafits)
}

limmafit.counts <-
  function (exprs, groupid, compid, norm.factor.method = "TMM", voom.normalize.method = "none")
  {
    limmafits  <- list()
    compnum    <- nrow(compid)
    genenum    <- nrow(exprs)
    limmat     <- matrix(NA,genenum,compnum)
    limmas2    <- rep(0,compnum)
    limmadf    <- rep(0,compnum)
    limmav0    <- rep(0,compnum)
    limmag1num <- rep(0,compnum)
    limmag2num <- rep(0,compnum)

    rownames(limmat)  <- rownames(exprs)
    colnames(limmat)  <- rownames(compid)
    names(limmas2)    <- rownames(compid)
    names(limmadf)    <- rownames(compid)
    names(limmav0)    <- rownames(compid)
    names(limmag1num) <- rownames(compid)
    names(limmag2num) <- rownames(compid)

    for (i in 1:compnum) {
      message(paste("Running limma for comparision",i,"/",compnum))
      selid1 <- which(groupid == compid[i, 1])
      selid2 <- which(groupid == compid[i, 2])
      # make a new count data frame
      counts <- cbind(exprs[, selid1], exprs[, selid2])

      # remove NAs
      not.nas <- which(apply(counts, 1, function(x) !any(is.na(x))) == TRUE)

      # runn voom/limma
      d <- DGEList(counts[not.nas,])
      d <- calcNormFactors(d, method = norm.factor.method)
      g1num <- length(selid1)
      g2num <- length(selid2)
      designmat <- cbind(base = rep(1, (g1num + g2num)), delta = c(rep(0,
                                                                       g1num), rep(1, g2num)))

      y <- voom(d, designmat, normalize.method = voom.normalize.method)
      fit <- lmFit(y, designmat)
      fit <- eBayes(fit)

      limmafits[[i]] <- fit
      limmat[not.nas, i] <- fit$t[, 2]
      limmas2[i] <- fit$s2.prior
      limmadf[i] <- fit$df.prior
      limmav0[i] <- fit$var.prior[2]
      limmag1num[i] <- g1num
      limmag2num[i] <- g2num
    }
    limmacompnum <- nrow(compid)
    names(limmafits) <- rownames(compid)
    result <- list(t       = limmat,
                   v0      = limmav0,
                   df0     = limmadf,
                   s20     = limmas2,
                   g1num   = limmag1num,
                   g2num   = limmag2num,
                   compnum = limmacompnum,
                   fits    = limmafits)
  }

limmafit.list <-
  function (fitlist, cmp.idx=2)
  {
    compnum    <- length(fitlist)

    genes <- c()
    for (i in 1:compnum) genes <- unique(c(genes, rownames(fitlist[[i]])))

    genenum    <- length(genes)
    limmat     <- matrix(NA,genenum,compnum)
    limmas2    <- rep(0,compnum)
    limmadf    <- rep(0,compnum)
    limmav0    <- rep(0,compnum)
    limmag1num <- rep(0,compnum)
    limmag2num <- rep(0,compnum)

    rownames(limmat)  <- genes
    colnames(limmat)  <- names(fitlist)
    names(limmas2)    <- names(fitlist)
    names(limmadf)    <- names(fitlist)
    names(limmav0)    <- names(fitlist)
    names(limmag1num) <- names(fitlist)
    names(limmag2num) <- names(fitlist)

    for (i in 1:compnum) {
      this.t <- fitlist[[i]]$t[,cmp.idx]
      limmat[names(this.t),i] <- this.t

      limmas2[i]    <- fitlist[[i]]$s2.prior
      limmadf[i]    <- fitlist[[i]]$df.prior
      limmav0[i]    <- fitlist[[i]]$var.prior[cmp.idx]
      limmag1num[i] <- sum(fitlist[[i]]$design[,cmp.idx]==0)
      limmag2num[i] <- sum(fitlist[[i]]$design[,cmp.idx]==1)
    }

    limmacompnum <- compnum
    result <- list(t       = limmat,
                   v0      = limmav0,
                   df0     = limmadf,
                   s20     = limmas2,
                   g1num   = limmag1num,
                   g2num   = limmag2num,
                   compnum = limmacompnum,
                   fits    = limmafits)

  }

## Rank genes based on statistics
generank<-function(x) {
  xcol<-ncol(x)
  xrow<-nrow(x)
  result<-matrix(0,xrow,xcol)
  z<-(1:1:xrow)
  for(i in 1:xcol) {
    y<-sort(x[,i],decreasing=TRUE,na.last=TRUE)
    result[,i]<-match(x[,i],y)
    result[,i]<-order(result[,i])
  }
  result
}

## Log-likelihood for moderated t under H0
modt.f0.loglike<-function(x,df) {
  a<-dt(x, df, log=TRUE)
  result<-as.vector(a)
  flag<-which(is.na(result)==TRUE)
  result[flag]<-0
  result
}

## Log-likelihood for moderated t under H1
## param=c(df,g1num,g2num,v0)
modt.f1.loglike<-function(x,param) {
  df<-param[1]
  g1num<-param[2]
  g2num<-param[3]
  v0<-param[4]
  w<-sqrt(1+v0/(1/g1num+1/g2num))
  dt(x/w, df, log=TRUE)-log(w)
  a<-dt(x/w, df, log=TRUE)-log(w)
  result<-as.vector(a)
  flag<-which(is.na(result)==TRUE)
  result[flag]<-0
  result
}

## Correlation Motif Fit
cmfit.X<-function(x, type, K=1, tol=1e-3, max.iter=100) {
  ## initialize
  xrow <- nrow(x)
  xcol <- ncol(x)
  loglike0 <- list()
  loglike1 <- list()
  p <- rep(1, K)/K
  q <- matrix(runif(K * xcol), K, xcol)
  q[1, ] <- rep(0.01, xcol)
  for (i in 1:xcol) {
    f0 <- type[[i]][[1]]
    f0param <- type[[i]][[2]]
    f1 <- type[[i]][[3]]
    f1param <- type[[i]][[4]]
    loglike0[[i]] <- f0(x[, i], f0param)
    loglike1[[i]] <- f1(x[, i], f1param)
  }
  condlike <- list()
  for (i in 1:xcol) {
    condlike[[i]] <- matrix(0, xrow, K)
  }
  loglike.old <- -1e+10
  for (i.iter in 1:max.iter) {
    if ((i.iter%%50) == 0) {
      print(paste("We have run the first ", i.iter, " iterations for K=",
                  K, sep = ""))
    }
    err <- tol + 1
    clustlike <- matrix(0, xrow, K)
    #templike <- matrix(0, xrow, 2)
    templike1 <- rep(0, xrow)
    templike2 <- rep(0, xrow)
    for (j in 1:K) {
      for (i in 1:xcol) {
        templike1 <- log(q[j, i]) + loglike1[[i]]
        templike2 <- log(1 - q[j, i]) + loglike0[[i]]
        tempmax <- Rfast::Pmax(templike1, templike2)

        templike1 <- exp(templike1 - tempmax)
        templike2 <- exp(templike2 - tempmax)

        tempsum <- templike1 + templike2
        clustlike[, j] <- clustlike[, j] + tempmax +
          log(tempsum)
        condlike[[i]][, j] <- templike1/tempsum
      }
      clustlike[, j] <- clustlike[, j] + log(p[j])
    }
    #tempmax <- apply(clustlike, 1, max)
    tempmax <- Rfast::rowMaxs(clustlike, value=TRUE)
    for (j in 1:K) {
      clustlike[, j] <- exp(clustlike[, j] - tempmax)
    }
    #tempsum <- apply(clustlike, 1, sum)
    tempsum <- Rfast::rowsums(clustlike)
    for (j in 1:K) {
      clustlike[, j] <- clustlike[, j]/tempsum
    }
    #p.new <- (apply(clustlike, 2, sum) + 1)/(xrow + K)
    p.new <- (Rfast::colsums(clustlike) + 1)/(xrow + K)
    q.new <- matrix(0, K, xcol)
    for (j in 1:K) {
      clustpsum <- sum(clustlike[, j])
      for (i in 1:xcol) {
        q.new[j, i] <- (sum(clustlike[, j] * condlike[[i]][,
                                                           j]) + 1)/(clustpsum + 2)
      }
    }
    err.p <- max(abs(p.new - p)/p)
    err.q <- max(abs(q.new - q)/q)
    err <- max(err.p, err.q)
    loglike.new <- (sum(tempmax + log(tempsum)) + sum(log(p.new)) +
                      sum(log(q.new) + log(1 - q.new)))/xrow
    p <- p.new
    q <- q.new
    loglike.old <- loglike.new
    if (err < tol) {
      break
    }
  }
  clustlike <- matrix(0, xrow, K)
  for (j in 1:K) {
    for (i in 1:xcol) {
      templike1 <- log(q[j, i]) + loglike1[[i]]
      templike2 <- log(1 - q[j, i]) + loglike0[[i]]
      tempmax <- Rfast::Pmax(templike1, templike2)

      templike1 <- exp(templike1 - tempmax)
      templike2 <- exp(templike2 - tempmax)

      tempsum <- templike1 + templike2
      clustlike[, j] <- clustlike[, j] + tempmax + log(tempsum)
      condlike[[i]][, j] <- templike1/tempsum
    }
    clustlike[, j] <- clustlike[, j] + log(p[j])
  }
  #tempmax <- apply(clustlike, 1, max)
  tempmax <- Rfast::rowMaxs(clustlike, value=TRUE)
  for (j in 1:K) {
    clustlike[, j] <- exp(clustlike[, j] - tempmax)
  }
  #tempsum <- apply(clustlike, 1, sum)
  tempsum <- Rfast::rowsums(clustlike)
  for (j in 1:K) {
    clustlike[, j] <- clustlike[, j]/tempsum
  }
  p.post <- matrix(0, xrow, xcol)
  for (j in 1:K) {
    for (i in 1:xcol) {
      p.post[, i] <- p.post[, i] + clustlike[, j] * condlike[[i]][,
                                                                  j]
    }
  }
  loglike.old <- loglike.old - (sum(log(p)) + sum(log(q) +
                                                    log(1 - q)))/xrow
  loglike.old <- loglike.old * xrow
  result <- list(p.post = p.post, motif.prior = p, motif.q = q,
                 loglike = loglike.old, clustlike=clustlike, condlike=condlike)
}

## Fit using (0,0,...,0) and (1,1,...,1)
cmfitall<-function(x, type, tol=1e-3, max.iter=100) {
  ## initialize
  xrow<-nrow(x)
  xcol<-ncol(x)
  loglike0<-list()
  loglike1<-list()
  p<-0.01

  ## compute loglikelihood
  L0<-matrix(0,xrow,1)
  L1<-matrix(0,xrow,1)
  for(i in 1:xcol) {
    f0<-type[[i]][[1]]
    f0param<-type[[i]][[2]]
    f1<-type[[i]][[3]]
    f1param<-type[[i]][[4]]
    loglike0[[i]]<-f0(x[,i],f0param)
    loglike1[[i]]<-f1(x[,i],f1param)
    L0<-L0+loglike0[[i]]
    L1<-L1+loglike1[[i]]
  }


  ## EM algorithm to get MLE of p and q
  loglike.old <- -1e10
  for(i.iter in 1:max.iter) {
    if((i.iter%%50) == 0) {
      print(paste("We have run the first ", i.iter, " iterations",sep=""))
    }
    err<-tol+1

    ## compute posterior cluster membership
    clustlike<-matrix(0,xrow,2)
    clustlike[,1]<-log(1-p)+L0
    clustlike[,2]<-log(p)+L1

    tempmax<-apply(clustlike,1,max)
    for(j in 1:2) {
      clustlike[,j]<-exp(clustlike[,j]-tempmax)
    }
    tempsum<-apply(clustlike,1,sum)

    ## update motif occurrence rate
    for(j in 1:2) {
      clustlike[,j]<-clustlike[,j]/tempsum
    }

    p.new<-(sum(clustlike[,2])+1)/(xrow+2)

    ## evaluate convergence
    err<-abs(p.new-p)/p

    ## evaluate whether the log.likelihood increases
    loglike.new<-(sum(tempmax+log(tempsum))+log(p.new)+log(1-p.new))/xrow

    loglike.old<-loglike.new
    p<-p.new

    if(err<tol) {
      break;
    }
  }

  ## compute posterior p
  clustlike<-matrix(0,xrow,2)
  clustlike[,1]<-log(1-p)+L0
  clustlike[,2]<-log(p)+L1

  tempmax<-apply(clustlike,1,max)
  for(j in 1:2) {
    clustlike[,j]<-exp(clustlike[,j]-tempmax)
  }
  tempsum<-apply(clustlike,1,sum)

  for(j in 1:2) {
    clustlike[,j]<-clustlike[,j]/tempsum
  }

  p.post<-matrix(0,xrow,xcol)
  for(i in 1:xcol) {
    p.post[,i]<-clustlike[,2]
  }

  ## return

  #calculate back loglikelihood
  loglike.old<-loglike.old-(log(p)+log(1-p))/xrow
  loglike.old<-loglike.old*xrow
  result<-list(p.post=p.post, motif.prior=p, loglike=loglike.old)
}

## Fit each dataset separately
cmfitsep<-function(x, type, tol=1e-3, max.iter=100) {
  ## initialize
  xrow<-nrow(x)
  xcol<-ncol(x)
  loglike0<-list()
  loglike1<-list()
  p<-0.01*rep(1,xcol)
  loglike.final<-rep(0,xcol)

  ## compute loglikelihood
  for(i in 1:xcol) {
    f0<-type[[i]][[1]]
    f0param<-type[[i]][[2]]
    f1<-type[[i]][[3]]
    f1param<-type[[i]][[4]]
    loglike0[[i]]<-f0(x[,i],f0param)
    loglike1[[i]]<-f1(x[,i],f1param)
  }

  p.post<-matrix(0,xrow,xcol)

  ## EM algorithm to get MLE of p
  for(coli in 1:xcol) {
    loglike.old <- -1e10
    for(i.iter in 1:max.iter) {
      if((i.iter%%50) == 0) {
        print(paste("We have run the first ", i.iter, " iterations",sep=""))
      }
      err<-tol+1

      ## compute posterior cluster membership
      clustlike<-matrix(0,xrow,2)
      clustlike[,1]<-log(1-p[coli])+loglike0[[coli]]
      clustlike[,2]<-log(p[coli])+loglike1[[coli]]

      tempmax<-apply(clustlike,1,max)
      for(j in 1:2) {
        clustlike[,j]<-exp(clustlike[,j]-tempmax)
      }
      tempsum<-apply(clustlike,1,sum)

      ## evaluate whether the log.likelihood increases
      loglike.new<-sum(tempmax+log(tempsum))/xrow

      ## update motif occurrence rate
      for(j in 1:2) {
        clustlike[,j]<-clustlike[,j]/tempsum
      }

      p.new<-(sum(clustlike[,2]))/(xrow)

      ## evaluate convergence
      err<-abs(p.new-p[coli])/p[coli]
      loglike.old<-loglike.new
      p[coli]<-p.new

      if(err<tol) {
        break;
      }
    }

    ## compute posterior p
    clustlike<-matrix(0,xrow,2)
    clustlike[,1]<-log(1-p[coli])+loglike0[[coli]]
    clustlike[,2]<-log(p[coli])+loglike1[[coli]]

    tempmax<-apply(clustlike,1,max)
    for(j in 1:2) {
      clustlike[,j]<-exp(clustlike[,j]-tempmax)
    }
    tempsum<-apply(clustlike,1,sum)

    for(j in 1:2) {
      clustlike[,j]<-clustlike[,j]/tempsum
    }

    p.post[,coli]<-clustlike[,2]
    loglike.final[coli]<-loglike.old
  }


  ## return
  loglike.final<-loglike.final*xrow
  result<-list(p.post=p.post, motif.prior=p, loglike=loglike.final)
}

## Fit the full model
cmfitfull<-function(x, type, tol=1e-3, max.iter=100) {
  ## initialize
  xrow<-nrow(x)
  xcol<-ncol(x)
  loglike0<-list()
  loglike1<-list()
  K<-2^xcol
  p<-rep(1,K)/K
  pattern<-rep(0,xcol)
  patid<-matrix(0,K,xcol)

  ## compute loglikelihood
  for(i in 1:xcol) {
    f0<-type[[i]][[1]]
    f0param<-type[[i]][[2]]
    f1<-type[[i]][[3]]
    f1param<-type[[i]][[4]]
    loglike0[[i]]<-f0(x[,i],f0param)
    loglike1[[i]]<-f1(x[,i],f1param)
  }
  L<-matrix(0,xrow,K)
  for(i in 1:K)
  {
    patid[i,]<-pattern
    for(j in 1:xcol) {
      if(pattern[j] < 0.5) {
        L[,i]<-L[,i]+loglike0[[j]]
      } else {
        L[,i]<-L[,i]+loglike1[[j]]
      }
    }

    if(i < K) {
      pattern[xcol]<-pattern[xcol]+1
      j<-xcol
      while(pattern[j] > 1) {
        pattern[j]<-0
        j<-j-1
        pattern[j]<-pattern[j]+1
      }
    }
  }

  ## EM algorithm to get MLE of p and q
  loglike.old <- -1e10
  for(i.iter in 1:max.iter) {
    if((i.iter%%50) == 0) {
      print(paste("We have run the first ", i.iter, " iterations",sep=""))
    }
    err<-tol+1

    ## compute posterior cluster membership
    clustlike<-matrix(0,xrow,K)
    for(j in 1:K) {
      clustlike[,j]<-log(p[j])+L[,j]
    }

    tempmax<-apply(clustlike,1,max)
    for(j in 1:K) {
      clustlike[,j]<-exp(clustlike[,j]-tempmax)
    }
    tempsum<-apply(clustlike,1,sum)

    ## update motif occurrence rate
    for(j in 1:K) {
      clustlike[,j]<-clustlike[,j]/tempsum
    }

    p.new<-(apply(clustlike,2,sum)+1)/(xrow+K)

    ## evaluate convergence
    err<-max(abs(p.new-p)/p)

    ## evaluate whether the log.likelihood increases
    loglike.new<-(sum(tempmax+log(tempsum))+sum(log(p.new)))/xrow

    loglike.old<-loglike.new
    p<-p.new

    if(err<tol) {
      break;
    }
  }

  ## compute posterior p
  clustlike<-matrix(0,xrow,K)
  for(j in 1:K) {
    clustlike[,j]<-log(p[j])+L[,j]
  }

  tempmax<-apply(clustlike,1,max)
  for(j in 1:K) {
    clustlike[,j]<-exp(clustlike[,j]-tempmax)
  }
  tempsum<-apply(clustlike,1,sum)

  for(j in 1:K) {
    clustlike[,j]<-clustlike[,j]/tempsum
  }

  p.post<-matrix(0,xrow,xcol)
  for(j in 1:K) {
    for(i in 1:xcol) {
      if(patid[j,i] > 0.5) {
        p.post[,i]<-p.post[,i]+clustlike[,j]
      }
    }
  }

  ## return
  #calculate back loglikelihood
  loglike.old<-loglike.old-sum(log(p))/xrow
  loglike.old<-loglike.old*xrow
  result<-list(p.post=p.post, motif.prior=p, loglike=loglike.old)
}

generatetype<-function(limfitted)
{
  jtype<-list()
  df<-limfitted$g1num+limfitted$g2num-2+limfitted$df0
  for(j in 1:limfitted$compnum)
  {
    jtype[[j]]<-list(f0=modt.f0.loglike, f0.param=df[j], f1=modt.f1.loglike, f1.param=c(df[j],limfitted$g1num[j],limfitted$g2num[j],limfitted$v0[j]))
  }
  jtype
}

cormotiffit <- function(exprs, groupid=NULL, compid=NULL, K=1, tol=1e-3,
                        max.iter=100, BIC=TRUE, norm.factor.method="TMM",
                        voom.normalize.method = "none", runtype=c("logCPM","counts","limmafits"), each=3)
{
  # first I want to do some typechecking. Input can be either a normalized
  # matrix, a count matrix, or a list of limma fits. Dispatch the correct
  # limmafit accordingly.
  # todo: add some typechecking here
  limfitted <- list()
  if (runtype=="counts") {
    limfitted <- limmafit.counts(exprs,groupid,compid, norm.factor.method, voom.normalize.method)
  } else if (runtype=="logCPM") {
    limfitted <- limmafit.default(exprs,groupid,compid)
  } else if (runtype=="limmafits") {
    limfitted <- limmafit.list(exprs)
  } else {
    stop("runtype must be one of 'logCPM', 'counts', or 'limmafits'")
  }


  jtype<-generatetype(limfitted)
  fitresult<-list()
  ks <- rep(K, each = each)
  fitresult <- bplapply(1:length(ks), function(i, x, type, ks, tol, max.iter) {
    cmfit.X(x, type, K = ks[i], tol = tol, max.iter = max.iter)
  }, x=limfitted$t, type=jtype, ks=ks, tol=tol, max.iter=max.iter)

  best.fitresults <- list()
  for (i in 1:length(K)) {
    w.k <- which(ks==K[i])
    this.bic <- c()
    for (j in w.k) this.bic[j] <- -2 * fitresult[[j]]$loglike + (K[i] - 1 + K[i] * limfitted$compnum) * log(dim(limfitted$t)[1])
    w.min <- which(this.bic == min(this.bic, na.rm = TRUE))[1]
    best.fitresults[[i]] <- fitresult[[w.min]]
  }
  fitresult <- best.fitresults

  bic <- rep(0, length(K))
  aic <- rep(0, length(K))
  loglike <- rep(0, length(K))
  for (i in 1:length(K)) loglike[i] <- fitresult[[i]]$loglike
  for (i in 1:length(K)) bic[i] <- -2 * fitresult[[i]]$loglike + (K[i] - 1 + K[i] * limfitted$compnum) * log(dim(limfitted$t)[1])
  for (i in 1:length(K)) aic[i] <- -2 * fitresult[[i]]$loglike + 2 * (K[i] - 1 + K[i] * limfitted$compnum)
  if(BIC==TRUE) {
    bestflag=which(bic==min(bic))
  }
  else {
    bestflag=which(aic==min(aic))
  }
  result<-list(bestmotif=fitresult[[bestflag]],bic=cbind(K,bic),
               aic=cbind(K,aic),loglike=cbind(K,loglike), allmotifs=fitresult)

}

cormotiffitall<-function(exprs,groupid,compid, tol=1e-3, max.iter=100)
{
  limfitted<-limmafit(exprs,groupid,compid)
  jtype<-generatetype(limfitted)
  fitresult<-cmfitall(limfitted$t,type=jtype,tol=1e-3,max.iter=max.iter)
}

cormotiffitsep<-function(exprs,groupid,compid, tol=1e-3, max.iter=100)
{
  limfitted<-limmafit(exprs,groupid,compid)
  jtype<-generatetype(limfitted)
  fitresult<-cmfitsep(limfitted$t,type=jtype,tol=1e-3,max.iter=max.iter)
}

cormotiffitfull<-function(exprs,groupid,compid, tol=1e-3, max.iter=100)
{
  limfitted<-limmafit(exprs,groupid,compid)
  jtype<-generatetype(limfitted)
  fitresult<-cmfitfull(limfitted$t,type=jtype,tol=1e-3,max.iter=max.iter)
}

plotIC<-function(fitted_cormotif)
{
  oldpar<-par(mfrow=c(1,2))
  plot(fitted_cormotif$bic[,1], fitted_cormotif$bic[,2], type="b",xlab="Motif Number", ylab="BIC", main="BIC")
  plot(fitted_cormotif$aic[,1], fitted_cormotif$aic[,2], type="b",xlab="Motif Number", ylab="AIC", main="AIC")
}

plotMotif<-function(fitted_cormotif,title="")
{
  layout(matrix(1:2,ncol=2))
  u<-1:dim(fitted_cormotif$bestmotif$motif.q)[2]
  v<-1:dim(fitted_cormotif$bestmotif$motif.q)[1]
  image(u,v,t(fitted_cormotif$bestmotif$motif.q),
        col=gray(seq(from=1,to=0,by=-0.1)),xlab="Study",yaxt = "n",
        ylab="Corr. Motifs",main=paste(title,"pattern",sep=" "))
  axis(2,at=1:length(v))
  for(i in 1:(length(u)+1))
  {
    abline(v=(i-0.5))
  }
  for(i in 1:(length(v)+1))
  {
    abline(h=(i-0.5))
  }
  Ng=10000
  if(is.null(fitted_cormotif$bestmotif$p.post)!=TRUE)
    Ng=nrow(fitted_cormotif$bestmotif$p.post)
  genecount=floor(fitted_cormotif$bestmotif$motif.p*Ng)
  NK=nrow(fitted_cormotif$bestmotif$motif.q)
  plot(0,0.7,pch=".",xlim=c(0,1.2),ylim=c(0.75,NK+0.25),
       frame.plot=FALSE,axes=FALSE,xlab="No. of genes",ylab="", main=paste(title,"frequency",sep=" "))
  segments(0,0.7,fitted_cormotif$bestmotif$motif.p[1],0.7)
  rect(0,1:NK-0.3,fitted_cormotif$bestmotif$motif.p,1:NK+0.3,
       col="dark grey")
  mtext(1:NK,at=1:NK,side=2,cex=0.8)
  text(fitted_cormotif$bestmotif$motif.p+0.15,1:NK,
       labels=floor(fitted_cormotif$bestmotif$motif.p*Ng))
}

plotMotifnew<-function(fitted_cormotif,title="")
{
  layout(matrix(1:2,ncol=2))
  u<-1:dim(fitted_cormotif$motif.q)[2]
  v<-1:dim(fitted_cormotif$motif.q)[1]
  image(u,v,t(fitted_cormotif$motif.q),
        col=gray(seq(from=1,to=0,by=-0.1)),xlab="Experiment",yaxt = "n",
        ylab="Corr. Motifs",main=paste(title,"pattern",sep=" "))
  axis(2,at=1:length(v))
  for(i in 1:(length(u)+1))
  {
    abline(v=(i-0.5))
  }
  for(i in 1:(length(v)+1))
  {
    abline(h=(i-0.5))
  }
  Ng=10000
  if(is.null(fitted_cormotif$p.post)!=TRUE)
    Ng=nrow(fitted_cormotif$p.post)
  genecount=floor(fitted_cormotif$motif.p*Ng)
  NK=nrow(fitted_cormotif$motif.q)
  plot(0,0.7,pch=".",xlim=c(0,1.2),ylim=c(0.75,NK+0.25),
       frame.plot=FALSE,axes=FALSE,xlab="No. of regions",ylab="", main=paste(title,"frequency",sep=" "))
  segments(0,0.7,fitted_cormotif$motif.p[1],0.7)
  rect(0,1:NK-0.3,fitted_cormotif$motif.p,1:NK+0.3,
       col="dark grey")
  mtext(1:NK,at=1:NK,side=2,cex=0.8)
  text(fitted_cormotif$motif.p+0.15,1:NK,
       labels=floor(fitted_cormotif$motif.p*Ng))
}

Loading counts matrix and making filtered matrix

drug_pal <- c("#8B006D","#DF707E","#F1B72B", "#3386DD","#707031","#41B333")
raw_counts <- read_delim("data/Final_four_data/re_analysis/Raw_unfiltered_counts.tsv",delim="\t") %>% 
  column_to_rownames("Peakid") %>% 
  as.matrix()

lcpm <- cpm(raw_counts, log= TRUE)
  ### for determining the basic cutoffs
filt_raw_counts <- raw_counts[rowMeans(lcpm)> 0,]

filt_raw_counts_noY <- filt_raw_counts[!grepl("chrY",rownames(filt_raw_counts)),]
dim(filt_raw_counts_noY)
[1] 155557     48

Number of filtered regions without the y chromosome = 155557 regions

making the metadata form

annotation_mat <- data.frame(timeset=colnames(filt_raw_counts_noY)) %>%
  mutate(sample = timeset) %>% 
  separate(timeset, into = c("indv","trt","time"), sep= "_") %>% 
  mutate(time = factor(time, levels = c("3h", "24h"))) %>% 
  mutate(trt = factor(trt, levels = c("DOX","EPI", "DNR", "MTX", "TRZ", "VEH"))) %>% 
  mutate(indv=factor(indv, levels = c("A","B","C","D"))) %>% 
  mutate(trt_time=paste0(trt,"_",time))

Preparing dge object

group <- c( rep(c(1,2,3,4,5,6,7,8,9,10,11,12),4))
group <- factor(group, levels =c("1","2","3","4","5","6","7","8","9","10","11","12"))
dge <-  DGEList.data.frame(counts = filt_raw_counts_noY, group = group, genes = row.names(filt_raw_counts_noY))
dge <- calcNormFactors(dge)

Adding group and comparison matrices

group_fac <- group
groupid <- as.numeric(group_fac)

compid <- data.frame(c1= c(2,4,6,8,10,1,3,5,7,9), c2 = c( 12,12,12,12,12,11,11,11,11,11))
compid
   c1 c2
1   2 12
2   4 12
3   6 12
4   8 12
5  10 12
6   1 11
7   3 11
8   5 11
9   7 11
10  9 11
y_TMM_cpm <- cpm(dge, log = TRUE)

colnames(y_TMM_cpm)
 [1] "D_DNR_24h" "D_DNR_3h"  "D_DOX_24h" "D_DOX_3h"  "D_EPI_24h" "D_EPI_3h" 
 [7] "D_MTX_24h" "D_MTX_3h"  "D_TRZ_24h" "D_TRZ_3h"  "D_VEH_24h" "D_VEH_3h" 
[13] "A_DNR_24h" "A_DNR_3h"  "A_DOX_24h" "A_DOX_3h"  "A_EPI_24h" "A_EPI_3h" 
[19] "A_MTX_24h" "A_MTX_3h"  "A_TRZ_24h" "A_TRZ_3h"  "A_VEH_24h" "A_VEH_3h" 
[25] "B_DNR_24h" "B_DNR_3h"  "B_DOX_24h" "B_DOX_3h"  "B_EPI_24h" "B_EPI_3h" 
[31] "B_MTX_24h" "B_MTX_3h"  "B_TRZ_24h" "B_TRZ_3h"  "B_VEH_24h" "B_VEH_3h" 
[37] "C_DNR_24h" "C_DNR_3h"  "C_DOX_24h" "C_DOX_3h"  "C_EPI_24h" "C_EPI_3h" 
[43] "C_MTX_24h" "C_MTX_3h"  "C_TRZ_24h" "C_TRZ_3h"  "C_VEH_24h" "C_VEH_3h" 

Now that factors are grouped, We will call the cormotiffit function to look at K=1:8.
This will be saved as an RDS for future use and lack of reruning

set.seed(31415)
cormotif_initial_norm <- cormotiffit(exprs = y_TMM_cpm, groupid = groupid, compid = compid, K=1:8, max.iter = 500, runtype = "logCPM")

saveRDS(cormotif_initial_norm,"data/Final_four_data/re_analysis/Cormotif_norm_initial.RDS")
cormotif_initial_norm <- readRDS("data/Final_four_data/re_analysis/Cormotif_norm_initial.RDS")

plotMotif(cormotif_initial_norm)

Version Author Date
ac1a2a6 reneeisnowhere 2025-05-06
plotIC(cormotif_initial_norm)

Version Author Date
ac1a2a6 reneeisnowhere 2025-05-06
myColors <-  rev(c("#FFFFFF", "#E6E6E6" ,"#CCCCCC", "#B3B3B3", "#999999", "#808080", "#666666","#4C4C4C", "#333333", "#191919","#000000"))

plot.new()
legend('center',fill=myColors, legend =rev(c("0", "0.1", "0.2", "0.3", "0.4",  "0.5", "0.6", "0.7", "0.8","0.9", "1")), box.col="white",title = "Probability\nlegend", horiz=FALSE,title.cex=.8)
motif_prob <- cormotif_initial_norm$bestmotif$clustlike
rownames(motif_prob) <- rownames(y_TMM_cpm)
# saveRDS(motif_prob,"data/Final_four_data/re_analysis/motif_prob_norm.RDS")

Version Author Date
ac1a2a6 reneeisnowhere 2025-05-06

Four motifs were found, now to generate the lists of regions that belong to each motif.

# motif_prob <- readRDS("data/Final_four_data/re_analysis/motif_prob_norm.RDS")

background_peaks <- motif_prob %>% 
  as.data.frame() %>% 
  rownames_to_column("Peakid") %>% 
  dplyr::select(Peakid) %>% 
  separate(Peakid, into=c("chr","start","end"),remove = FALSE)
 
NR_ff <- motif_prob %>%
  as.data.frame() %>% 
  dplyr::filter(V1>.5 & V2<.5 & V3 <.5& V4<0.5) %>% 
  rownames_to_column("Peakid") %>% 
  dplyr::select(Peakid) %>% 
  separate(Peakid, into=c("chr","start","end"),remove = FALSE)
 
EAR_ff <- motif_prob %>%
   as.data.frame() %>% 
  dplyr::filter(V1<.5 & V2>.5 & V3 <.5& V4<0.5) %>% 
  rownames_to_column("Peakid") %>% 
  dplyr::select(Peakid) %>% 
  separate(Peakid, into=c("chr","start","end"),remove = FALSE)
 
 
LR_ff <- motif_prob %>%
  as.data.frame() %>% 
  dplyr::filter(V1<.5 & V2<.5 & V3 >.5& V4<0.5) %>% 
  rownames_to_column("Peakid") %>% 
  dplyr::select(Peakid) %>% 
  separate(Peakid, into=c("chr","start","end"),remove = FALSE)
 

ESR_ff <- motif_prob %>%
  as.data.frame() %>% 
  dplyr::filter(V1<.5 & V2<.5 & V3 <.5& V4>0.5) %>% 
  rownames_to_column("Peakid") %>% 
  dplyr::select(Peakid) %>% 
  separate(Peakid, into=c("chr","start","end"),remove = FALSE)

-EAR group has 7974 peaks.
-ESR group has 15128 peaks.
-LR group has 44227 peaks.
-NR group has 85154 peaks.
–Total number of peaks is 155557 –Total number of peaks in clusters is 152483
-percent of peaks classified into clusters: 98.0238755
-number of peaks not classified: 3074

Now to break into opening and closing motifs by group

median_24_lfc <- read_csv("data/Final_four_data/re_analysis/median_24_lfc_norm.csv") 
median_3_lfc <- read_csv("data/Final_four_data/re_analysis/median_3_lfc_norm.csv")

open_3med <- median_3_lfc %>% 
  dplyr::filter(med_3h_lfc > 0)

close_3med <- median_3_lfc %>% 
  dplyr::filter(med_3h_lfc < 0)

open_24med <- median_24_lfc %>% 
  dplyr::filter(med_24h_lfc > 0)

close_24med <- median_24_lfc %>% 
  dplyr::filter(med_24h_lfc < 0)

medA <- median_3_lfc %>% 
  left_join(median_24_lfc, by=c("peak"="peak")) %>% 
  dplyr::filter(med_3h_lfc > 0 & med_24h_lfc>0)

medB <- median_3_lfc %>% 
  left_join(median_24_lfc, by=c("peak"="peak")) %>% 
  dplyr::filter(med_3h_lfc < 0 & med_24h_lfc < 0)
 
medC <- median_3_lfc %>% 
  left_join(median_24_lfc, by=c("peak"="peak")) %>% 
  dplyr::filter(med_3h_lfc > 0& med_24h_lfc <0)
  

medD <- median_3_lfc %>% 
 left_join(median_24_lfc, by=c("peak"="peak"))%>% 
  dplyr::filter(med_3h_lfc < 0 & med_24h_lfc > 0)
 

EAR_open <- EAR_ff %>%
  dplyr::filter(Peakid %in% open_3med$peak)
  
EAR_open_gr <- EAR_open %>% GRanges()

EAR_close <- EAR_ff %>%
  dplyr::filter(Peakid %in% close_3med$peak) 

EAR_close_gr <- EAR_close %>% GRanges()

LR_open <- LR_ff %>%
  dplyr::filter(Peakid %in% open_24med$peak) 

LR_open_gr <- LR_open %>% GRanges()

LR_close <- LR_ff %>%
  dplyr::filter(Peakid %in% close_24med$peak) 

LR_close_gr <- LR_close %>% GRanges()

NR_gr <- NR_ff %>% 
   GRanges()

ESR_open <- ESR_ff %>% 
  dplyr::filter(Peakid %in% medA$peak)  
 
ESR_open_gr <- ESR_open %>% GRanges()

ESR_close <- ESR_ff %>% 
  dplyr::filter(Peakid %in% medB$peak)  

ESR_close_gr <- ESR_close %>% GRanges()

ESR_opcl <- ESR_ff %>% 
  dplyr::filter(Peakid %in% medC$peak) 
ESR_opcl_gr <- ESR_opcl %>% GRanges()
ESR_clop <- ESR_ff %>% 
  dplyr::filter(Peakid %in% medD$peak) 
ESR_clop_gr <- ESR_clop %>% GRanges()

NR <- NR_ff
NR_gr <- NR %>% GRanges()

background_peaks_gr <- background_peaks %>% GRanges

Motif_list <- list("EAR_open"=EAR_open, 
                   "EAR_close"= EAR_close, 
                   "ESR_open"=ESR_open, 
                   "ESR_close"=ESR_close, 
                   "ESR_opcl"=ESR_opcl, 
                   "ESR_clop"=ESR_clop,
                   "LR_open"=LR_open, 
                   "LR_close"=LR_close, 
                   "NR"=NR_ff,
                   "all_regions"=background_peaks)

txdb <- TxDb.Hsapiens.UCSC.hg38.knownGene

Examining the Genomic features around each response motif region using Chipseeker

##make the Granges list
Motif_list_gr <- list("EAR_open"=EAR_open_gr, 
                   "EAR_close"= EAR_close_gr, 
                   "ESR_open"=ESR_open_gr, 
                   "ESR_close"=ESR_close_gr, 
                   "ESR_opcl"=ESR_opcl_gr, 
                   "ESR_clop"=ESR_clop_gr,
                   "LR_open"=LR_open_gr, 
                   "LR_close"=LR_close_gr, 
                   "NR"=NR_gr,
                   "all_regions"=background_peaks_gr)
peakAnnoList<- lapply(Motif_list_gr, annotatePeak, tssRegion =c(-2000,2000), TxDb= txdb)
>> preparing features information...         2025-05-15 11:33:35 AM 
>> identifying nearest features...       2025-05-15 11:33:36 AM 
>> calculating distance from peak to TSS...  2025-05-15 11:33:37 AM 
>> assigning genomic annotation...       2025-05-15 11:33:37 AM 
>> assigning chromosome lengths          2025-05-15 11:33:56 AM 
>> done...                   2025-05-15 11:33:56 AM 
>> preparing features information...         2025-05-15 11:33:56 AM 
>> identifying nearest features...       2025-05-15 11:33:56 AM 
>> calculating distance from peak to TSS...  2025-05-15 11:33:57 AM 
>> assigning genomic annotation...       2025-05-15 11:33:57 AM 
>> assigning chromosome lengths          2025-05-15 11:34:00 AM 
>> done...                   2025-05-15 11:34:00 AM 
>> preparing features information...         2025-05-15 11:34:00 AM 
>> identifying nearest features...       2025-05-15 11:34:00 AM 
>> calculating distance from peak to TSS...  2025-05-15 11:34:00 AM 
>> assigning genomic annotation...       2025-05-15 11:34:00 AM 
>> assigning chromosome lengths          2025-05-15 11:34:03 AM 
>> done...                   2025-05-15 11:34:03 AM 
>> preparing features information...         2025-05-15 11:34:03 AM 
>> identifying nearest features...       2025-05-15 11:34:03 AM 
>> calculating distance from peak to TSS...  2025-05-15 11:34:04 AM 
>> assigning genomic annotation...       2025-05-15 11:34:04 AM 
>> assigning chromosome lengths          2025-05-15 11:34:07 AM 
>> done...                   2025-05-15 11:34:07 AM 
>> preparing features information...         2025-05-15 11:34:07 AM 
>> identifying nearest features...       2025-05-15 11:34:07 AM 
>> calculating distance from peak to TSS...  2025-05-15 11:34:07 AM 
>> assigning genomic annotation...       2025-05-15 11:34:07 AM 
>> assigning chromosome lengths          2025-05-15 11:34:10 AM 
>> done...                   2025-05-15 11:34:10 AM 
>> preparing features information...         2025-05-15 11:34:10 AM 
>> identifying nearest features...       2025-05-15 11:34:10 AM 
>> calculating distance from peak to TSS...  2025-05-15 11:34:10 AM 
>> assigning genomic annotation...       2025-05-15 11:34:10 AM 
>> assigning chromosome lengths          2025-05-15 11:34:14 AM 
>> done...                   2025-05-15 11:34:14 AM 
>> preparing features information...         2025-05-15 11:34:14 AM 
>> identifying nearest features...       2025-05-15 11:34:14 AM 
>> calculating distance from peak to TSS...  2025-05-15 11:34:14 AM 
>> assigning genomic annotation...       2025-05-15 11:34:14 AM 
>> assigning chromosome lengths          2025-05-15 11:34:17 AM 
>> done...                   2025-05-15 11:34:17 AM 
>> preparing features information...         2025-05-15 11:34:18 AM 
>> identifying nearest features...       2025-05-15 11:34:18 AM 
>> calculating distance from peak to TSS...  2025-05-15 11:34:18 AM 
>> assigning genomic annotation...       2025-05-15 11:34:18 AM 
>> assigning chromosome lengths          2025-05-15 11:34:21 AM 
>> done...                   2025-05-15 11:34:21 AM 
>> preparing features information...         2025-05-15 11:34:21 AM 
>> identifying nearest features...       2025-05-15 11:34:21 AM 
>> calculating distance from peak to TSS...  2025-05-15 11:34:22 AM 
>> assigning genomic annotation...       2025-05-15 11:34:22 AM 
>> assigning chromosome lengths          2025-05-15 11:34:26 AM 
>> done...                   2025-05-15 11:34:26 AM 
>> preparing features information...         2025-05-15 11:34:26 AM 
>> identifying nearest features...       2025-05-15 11:34:26 AM 
>> calculating distance from peak to TSS...  2025-05-15 11:34:27 AM 
>> assigning genomic annotation...       2025-05-15 11:34:27 AM 
>> assigning chromosome lengths          2025-05-15 11:34:31 AM 
>> done...                   2025-05-15 11:34:31 AM 
plotAnnoBar(peakAnnoList[c(1,3,7,5,2,4,8,6,9)])+
  ggtitle ("Genomic Feature Distribution, All groups")

Version Author Date
ac1a2a6 reneeisnowhere 2025-05-06
# saveRDS(Motif_list_gr, "data/Final_four_data/re_analysis/Motif_list_granges.RDS")

Looking at the average logFC across clusters:

save_list <- readRDS("data/Final_four_data/re_analysis/Toptable_results.RDS")
all_results <- bind_rows(save_list, .id = "group")

mean_lfc <-
  all_results %>%
  separate(., group, into=c("trt","time")) %>% 
  dplyr::rename("Peakid"=genes) %>% 
  dplyr::select(Peakid,trt,time,logFC) %>% 
  mutate(EAR_open = if_else(Peakid %in% EAR_open$Peakid, "y", "no")) %>%
  mutate(EAR_close = if_else(Peakid %in% EAR_close$Peakid, "y", "no")) %>%
  mutate(ESR_open = if_else(Peakid %in% ESR_open$Peakid, "y", "no")) %>%
  mutate(ESR_close= if_else(Peakid %in% ESR_close$Peakid, "y", "no")) %>%
  mutate(ESR_opcl= if_else(Peakid %in% ESR_opcl$Peakid, "y", "no")) %>%
  mutate(ESR_clop= if_else(Peakid %in% ESR_clop$Peakid, "y", "no")) %>%
    mutate(LR_open= if_else(Peakid %in% LR_open$Peakid, "y", "no")) %>%
    mutate(LR_close= if_else(Peakid %in% LR_close$Peakid, "y", "no")) %>%
    mutate(NR = if_else(Peakid %in% NR_ff$Peakid, "y", "no"))%>%
  mutate(trt = factor(trt,levels=c("DOX","EPI","DNR","MTX","TRZ","VEH"))) %>%
  group_by(trt, time) %>%
  mutate(absFC = (logFC)) %>%  ##I took away abs(logFC) here but did not change code below
  dplyr::select(trt, time, absFC, EAR_open:NR) %>%
  dplyr::summarize(
    EAR_op = mean(absFC[EAR_open == "y"]),
    EAR_cl = mean(absFC[EAR_close == "y"]),
    ESR_op = mean(absFC[ESR_open == "y"]),
    ESR_cl = mean(absFC[ESR_close == "y"]),
   
    ESR_opcl = mean(absFC[ESR_opcl == "y"]),
    ESR_clop = mean(absFC[ESR_clop == "y"]),
    LR_op = mean(absFC[LR_open == "y"]),
    LR_cl = mean(absFC[LR_close == "y"]),
    NR = mean(absFC[NR == "y"])
  ) %>%
  as.data.frame()


mean_lfc %>%
  ungroup() %>%
  pivot_longer(!c(trt, time), names_to = "Motif",
               values_to = "meanLFC") %>%
  mutate(time=factor(time, levels = c("3","24"))) %>% 
  
  ggplot(., aes(x = time,y = meanLFC,col = trt,
    group = trt
  )) +
  geom_point(size = 2) +
  geom_line(linewidth = 2) +
  ggpubr::fill_palette(drug_pal) +
  # guides(fill=guide_legend(title = "Treatment"))+
  facet_wrap( ~ Motif, nrow = 2) +
  theme_bw() +
  xlab("Time (hours)") +
  scale_color_manual(values = drug_pal) +
  ylab(" Avg. Log Fold Change") +
  theme_bw() +
  theme(
    plot.title = element_text(size = rel(1.0), hjust = 0.5),
    axis.title = element_text(size = 15, color = "black"),
    axis.line = element_line(linewidth = 1.0),
    strip.background = element_rect(fill = "transparent"),
    axis.text = element_text(
      size = 10,
      color = "black",
      angle = 0
    ),
    strip.text.x = element_text(
      size = 11,
      color = "black",
      face = "bold"
    )
  )

Version Author Date
8af2b68 reneeisnowhere 2025-05-06
ac1a2a6 reneeisnowhere 2025-05-06
# Folder with input BED files

output_dir <- "data/Final_four_data/re_analysis/motif_beds_centered"

# Create output folder if needed
dir.create(output_dir, showWarnings = FALSE)

# Loop through each BED file
for (name in names(Motif_list_gr)) {
  gr <- Motif_list_gr[[name]]
  
  # Recenter each region to 200 bp around its midpoint
  gr_centered <- resize(gr, width = 200, fix = "center")
  
  # Export to BED (auto converts to 0-based)
  export(gr_centered, con = file.path(output_dir, paste0(name, "_centered.bed")), format = "BED")
}

sessionInfo()
R version 4.4.2 (2024-10-31 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 26100)

Matrix products: default


locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

time zone: America/Chicago
tzcode source: internal

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] smplot2_0.2.5                           
 [2] cowplot_1.1.3                           
 [3] ComplexHeatmap_2.22.0                   
 [4] ggrepel_0.9.6                           
 [5] plyranges_1.26.0                        
 [6] ggsignif_0.6.4                          
 [7] genomation_1.38.0                       
 [8] eulerr_7.0.2                            
 [9] devtools_2.4.5                          
[10] usethis_3.1.0                           
[11] ggpubr_0.6.0                            
[12] BiocParallel_1.40.0                     
[13] Cormotif_1.52.0                         
[14] affy_1.84.0                             
[15] scales_1.3.0                            
[16] VennDiagram_1.7.3                       
[17] futile.logger_1.4.3                     
[18] gridExtra_2.3                           
[19] ggfortify_0.4.17                        
[20] edgeR_4.4.2                             
[21] limma_3.62.2                            
[22] rtracklayer_1.66.0                      
[23] org.Hs.eg.db_3.20.0                     
[24] TxDb.Hsapiens.UCSC.hg38.knownGene_3.20.0
[25] GenomicFeatures_1.58.0                  
[26] AnnotationDbi_1.68.0                    
[27] Biobase_2.66.0                          
[28] GenomicRanges_1.58.0                    
[29] GenomeInfoDb_1.42.3                     
[30] IRanges_2.40.1                          
[31] S4Vectors_0.44.0                        
[32] BiocGenerics_0.52.0                     
[33] ChIPseeker_1.42.1                       
[34] RColorBrewer_1.1-3                      
[35] broom_1.0.7                             
[36] kableExtra_1.4.0                        
[37] lubridate_1.9.4                         
[38] forcats_1.0.0                           
[39] stringr_1.5.1                           
[40] dplyr_1.1.4                             
[41] purrr_1.0.4                             
[42] readr_2.1.5                             
[43] tidyr_1.3.1                             
[44] tibble_3.2.1                            
[45] ggplot2_3.5.1                           
[46] tidyverse_2.0.0                         
[47] workflowr_1.7.1                         

loaded via a namespace (and not attached):
  [1] fs_1.6.5                               
  [2] matrixStats_1.5.0                      
  [3] bitops_1.0-9                           
  [4] enrichplot_1.26.6                      
  [5] doParallel_1.0.17                      
  [6] httr_1.4.7                             
  [7] profvis_0.4.0                          
  [8] tools_4.4.2                            
  [9] backports_1.5.0                        
 [10] R6_2.6.1                               
 [11] lazyeval_0.2.2                         
 [12] GetoptLong_1.0.5                       
 [13] urlchecker_1.0.1                       
 [14] withr_3.0.2                            
 [15] preprocessCore_1.68.0                  
 [16] cli_3.6.4                              
 [17] formatR_1.14                           
 [18] labeling_0.4.3                         
 [19] sass_0.4.9                             
 [20] Rsamtools_2.22.0                       
 [21] systemfonts_1.2.1                      
 [22] yulab.utils_0.2.0                      
 [23] foreign_0.8-88                         
 [24] DOSE_4.0.0                             
 [25] svglite_2.1.3                          
 [26] R.utils_2.13.0                         
 [27] sessioninfo_1.2.3                      
 [28] plotrix_3.8-4                          
 [29] BSgenome_1.74.0                        
 [30] pwr_1.3-0                              
 [31] impute_1.80.0                          
 [32] rstudioapi_0.17.1                      
 [33] RSQLite_2.3.9                          
 [34] shape_1.4.6.1                          
 [35] generics_0.1.3                         
 [36] gridGraphics_0.5-1                     
 [37] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
 [38] BiocIO_1.16.0                          
 [39] vroom_1.6.5                            
 [40] gtools_3.9.5                           
 [41] car_3.1-3                              
 [42] GO.db_3.20.0                           
 [43] Matrix_1.7-3                           
 [44] abind_1.4-8                            
 [45] R.methodsS3_1.8.2                      
 [46] lifecycle_1.0.4                        
 [47] whisker_0.4.1                          
 [48] yaml_2.3.10                            
 [49] carData_3.0-5                          
 [50] SummarizedExperiment_1.36.0            
 [51] gplots_3.2.0                           
 [52] qvalue_2.38.0                          
 [53] SparseArray_1.6.2                      
 [54] blob_1.2.4                             
 [55] promises_1.3.2                         
 [56] crayon_1.5.3                           
 [57] miniUI_0.1.1.1                         
 [58] ggtangle_0.0.6                         
 [59] lattice_0.22-6                         
 [60] KEGGREST_1.46.0                        
 [61] pillar_1.10.1                          
 [62] knitr_1.49                             
 [63] fgsea_1.32.2                           
 [64] rjson_0.2.23                           
 [65] boot_1.3-31                            
 [66] codetools_0.2-20                       
 [67] fastmatch_1.1-6                        
 [68] glue_1.8.0                             
 [69] getPass_0.2-4                          
 [70] ggfun_0.1.8                            
 [71] data.table_1.17.0                      
 [72] remotes_2.5.0                          
 [73] vctrs_0.6.5                            
 [74] png_0.1-8                              
 [75] treeio_1.30.0                          
 [76] gtable_0.3.6                           
 [77] cachem_1.1.0                           
 [78] xfun_0.51                              
 [79] S4Arrays_1.6.0                         
 [80] mime_0.12                              
 [81] iterators_1.0.14                       
 [82] statmod_1.5.0                          
 [83] ellipsis_0.3.2                         
 [84] nlme_3.1-167                           
 [85] ggtree_3.14.0                          
 [86] bit64_4.6.0-1                          
 [87] rprojroot_2.0.4                        
 [88] bslib_0.9.0                            
 [89] affyio_1.76.0                          
 [90] rpart_4.1.24                           
 [91] KernSmooth_2.23-26                     
 [92] Hmisc_5.2-2                            
 [93] colorspace_2.1-1                       
 [94] DBI_1.2.3                              
 [95] nnet_7.3-20                            
 [96] seqPattern_1.38.0                      
 [97] tidyselect_1.2.1                       
 [98] processx_3.8.6                         
 [99] bit_4.6.0                              
[100] compiler_4.4.2                         
[101] curl_6.2.1                             
[102] git2r_0.35.0                           
[103] htmlTable_2.4.3                        
[104] xml2_1.3.7                             
[105] DelayedArray_0.32.0                    
[106] checkmate_2.3.2                        
[107] caTools_1.18.3                         
[108] callr_3.7.6                            
[109] digest_0.6.37                          
[110] rmarkdown_2.29                         
[111] XVector_0.46.0                         
[112] base64enc_0.1-3                        
[113] htmltools_0.5.8.1                      
[114] pkgconfig_2.0.3                        
[115] MatrixGenerics_1.18.1                  
[116] fastmap_1.2.0                          
[117] GlobalOptions_0.1.2                    
[118] rlang_1.1.5                            
[119] htmlwidgets_1.6.4                      
[120] UCSC.utils_1.2.0                       
[121] shiny_1.10.0                           
[122] farver_2.1.2                           
[123] jquerylib_0.1.4                        
[124] zoo_1.8-13                             
[125] jsonlite_1.9.1                         
[126] GOSemSim_2.32.0                        
[127] R.oo_1.27.0                            
[128] RCurl_1.98-1.16                        
[129] magrittr_2.0.3                         
[130] Formula_1.2-5                          
[131] GenomeInfoDbData_1.2.13                
[132] ggplotify_0.1.2                        
[133] patchwork_1.3.0                        
[134] munsell_0.5.1                          
[135] Rcpp_1.0.14                            
[136] ape_5.8-1                              
[137] stringi_1.8.4                          
[138] zlibbioc_1.52.0                        
[139] plyr_1.8.9                             
[140] pkgbuild_1.4.6                         
[141] parallel_4.4.2                         
[142] Biostrings_2.74.1                      
[143] splines_4.4.2                          
[144] circlize_0.4.16                        
[145] hms_1.1.3                              
[146] locfit_1.5-9.12                        
[147] ps_1.9.0                               
[148] igraph_2.1.4                           
[149] reshape2_1.4.4                         
[150] pkgload_1.4.0                          
[151] futile.options_1.0.1                   
[152] XML_3.99-0.18                          
[153] evaluate_1.0.3                         
[154] lambda.r_1.2.4                         
[155] BiocManager_1.30.25                    
[156] foreach_1.5.2                          
[157] tzdb_0.4.0                             
[158] httpuv_1.6.15                          
[159] clue_0.3-66                            
[160] gridBase_0.4-7                         
[161] xtable_1.8-4                           
[162] restfulr_0.0.15                        
[163] tidytree_0.4.6                         
[164] rstatix_0.7.2                          
[165] later_1.4.1                            
[166] viridisLite_0.4.2                      
[167] aplot_0.2.5                            
[168] memoise_2.0.1                          
[169] GenomicAlignments_1.42.0               
[170] cluster_2.1.8.1                        
[171] timechange_0.3.0