Last updated: 2025-02-26

Checks: 7 0

Knit directory: ATAC_learning/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20231016) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version a3bcc33. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/figure/
    Ignored:    data/ACresp_SNP_table.csv
    Ignored:    data/ARR_SNP_table.csv
    Ignored:    data/All_merged_peaks.tsv
    Ignored:    data/CAD_gwas_dataframe.RDS
    Ignored:    data/CTX_SNP_table.csv
    Ignored:    data/Collapsed_expressed_NG_peak_table.csv
    Ignored:    data/DEG_toplist_sep_n45.RDS
    Ignored:    data/FRiP_first_run.txt
    Ignored:    data/Final_four_data/
    Ignored:    data/Frip_1_reads.csv
    Ignored:    data/Frip_2_reads.csv
    Ignored:    data/Frip_3_reads.csv
    Ignored:    data/Frip_4_reads.csv
    Ignored:    data/Frip_5_reads.csv
    Ignored:    data/Frip_6_reads.csv
    Ignored:    data/GO_KEGG_analysis/
    Ignored:    data/HF_SNP_table.csv
    Ignored:    data/Ind1_75DA24h_dedup_peaks.csv
    Ignored:    data/Ind1_TSS_peaks.RDS
    Ignored:    data/Ind1_firstfragment_files.txt
    Ignored:    data/Ind1_fragment_files.txt
    Ignored:    data/Ind1_peaks_list.RDS
    Ignored:    data/Ind1_summary.txt
    Ignored:    data/Ind2_TSS_peaks.RDS
    Ignored:    data/Ind2_fragment_files.txt
    Ignored:    data/Ind2_peaks_list.RDS
    Ignored:    data/Ind2_summary.txt
    Ignored:    data/Ind3_TSS_peaks.RDS
    Ignored:    data/Ind3_fragment_files.txt
    Ignored:    data/Ind3_peaks_list.RDS
    Ignored:    data/Ind3_summary.txt
    Ignored:    data/Ind4_79B24h_dedup_peaks.csv
    Ignored:    data/Ind4_TSS_peaks.RDS
    Ignored:    data/Ind4_V24h_fraglength.txt
    Ignored:    data/Ind4_fragment_files.txt
    Ignored:    data/Ind4_fragment_filesN.txt
    Ignored:    data/Ind4_peaks_list.RDS
    Ignored:    data/Ind4_summary.txt
    Ignored:    data/Ind5_TSS_peaks.RDS
    Ignored:    data/Ind5_fragment_files.txt
    Ignored:    data/Ind5_fragment_filesN.txt
    Ignored:    data/Ind5_peaks_list.RDS
    Ignored:    data/Ind5_summary.txt
    Ignored:    data/Ind6_TSS_peaks.RDS
    Ignored:    data/Ind6_fragment_files.txt
    Ignored:    data/Ind6_peaks_list.RDS
    Ignored:    data/Ind6_summary.txt
    Ignored:    data/Knowles_4.RDS
    Ignored:    data/Knowles_5.RDS
    Ignored:    data/Knowles_6.RDS
    Ignored:    data/LiSiLTDNRe_TE_df.RDS
    Ignored:    data/MI_gwas.RDS
    Ignored:    data/SNP_GWAS_PEAK_MRC_id
    Ignored:    data/SNP_GWAS_PEAK_MRC_id.csv
    Ignored:    data/SNP_gene_cat_list.tsv
    Ignored:    data/SNP_supp_schneider.RDS
    Ignored:    data/TE_info/
    Ignored:    data/TFmapnames.RDS
    Ignored:    data/all_TSSE_scores.RDS
    Ignored:    data/all_four_filtered_counts.txt
    Ignored:    data/aln_run1_results.txt
    Ignored:    data/anno_ind1_DA24h.RDS
    Ignored:    data/anno_ind4_V24h.RDS
    Ignored:    data/annotated_gwas_SNPS.csv
    Ignored:    data/background_n45_he_peaks.RDS
    Ignored:    data/cardiac_muscle_FRIP.csv
    Ignored:    data/cardiomyocyte_FRIP.csv
    Ignored:    data/col_ng_peak.csv
    Ignored:    data/cormotif_full_4_run.RDS
    Ignored:    data/cormotif_full_4_run_he.RDS
    Ignored:    data/cormotif_full_6_run.RDS
    Ignored:    data/cormotif_full_6_run_he.RDS
    Ignored:    data/cormotif_probability_45_list.csv
    Ignored:    data/cormotif_probability_45_list_he.csv
    Ignored:    data/cormotif_probability_all_6_list.csv
    Ignored:    data/cormotif_probability_all_6_list_he.csv
    Ignored:    data/datasave.RDS
    Ignored:    data/embryo_heart_FRIP.csv
    Ignored:    data/enhancer_list_ENCFF126UHK.bed
    Ignored:    data/enhancerdata/
    Ignored:    data/filt_Peaks_efit2.RDS
    Ignored:    data/filt_Peaks_efit2_bl.RDS
    Ignored:    data/filt_Peaks_efit2_n45.RDS
    Ignored:    data/first_Peaksummarycounts.csv
    Ignored:    data/first_run_frag_counts.txt
    Ignored:    data/full_bedfiles/
    Ignored:    data/gene_ref.csv
    Ignored:    data/gwas_1_dataframe.RDS
    Ignored:    data/gwas_2_dataframe.RDS
    Ignored:    data/gwas_3_dataframe.RDS
    Ignored:    data/gwas_4_dataframe.RDS
    Ignored:    data/gwas_5_dataframe.RDS
    Ignored:    data/high_conf_peak_counts.csv
    Ignored:    data/high_conf_peak_counts.txt
    Ignored:    data/high_conf_peaks_bl_counts.txt
    Ignored:    data/high_conf_peaks_counts.txt
    Ignored:    data/hits_files/
    Ignored:    data/hyper_files/
    Ignored:    data/hypo_files/
    Ignored:    data/ind1_DA24hpeaks.RDS
    Ignored:    data/ind1_TSSE.RDS
    Ignored:    data/ind2_TSSE.RDS
    Ignored:    data/ind3_TSSE.RDS
    Ignored:    data/ind4_TSSE.RDS
    Ignored:    data/ind4_V24hpeaks.RDS
    Ignored:    data/ind5_TSSE.RDS
    Ignored:    data/ind6_TSSE.RDS
    Ignored:    data/initial_complete_stats_run1.txt
    Ignored:    data/left_ventricle_FRIP.csv
    Ignored:    data/median_24_lfc.RDS
    Ignored:    data/median_3_lfc.RDS
    Ignored:    data/mergedPeads.gff
    Ignored:    data/mergedPeaks.gff
    Ignored:    data/motif_list_full
    Ignored:    data/motif_list_n45
    Ignored:    data/motif_list_n45.RDS
    Ignored:    data/multiqc_fastqc_run1.txt
    Ignored:    data/multiqc_fastqc_run2.txt
    Ignored:    data/multiqc_genestat_run1.txt
    Ignored:    data/multiqc_genestat_run2.txt
    Ignored:    data/my_hc_filt_counts.RDS
    Ignored:    data/my_hc_filt_counts_n45.RDS
    Ignored:    data/n45_bedfiles/
    Ignored:    data/n45_files
    Ignored:    data/other_papers/
    Ignored:    data/peakAnnoList_1.RDS
    Ignored:    data/peakAnnoList_2.RDS
    Ignored:    data/peakAnnoList_24_full.RDS
    Ignored:    data/peakAnnoList_24_n45.RDS
    Ignored:    data/peakAnnoList_3.RDS
    Ignored:    data/peakAnnoList_3_full.RDS
    Ignored:    data/peakAnnoList_3_n45.RDS
    Ignored:    data/peakAnnoList_4.RDS
    Ignored:    data/peakAnnoList_5.RDS
    Ignored:    data/peakAnnoList_6.RDS
    Ignored:    data/peakAnnoList_Eight.RDS
    Ignored:    data/peakAnnoList_full_motif.RDS
    Ignored:    data/peakAnnoList_n45_motif.RDS
    Ignored:    data/siglist_full.RDS
    Ignored:    data/siglist_n45.RDS
    Ignored:    data/summarized_peaks_dataframe.txt
    Ignored:    data/summary_peakIDandReHeat.csv
    Ignored:    data/test.list.RDS
    Ignored:    data/testnames.txt
    Ignored:    data/toplist_6.RDS
    Ignored:    data/toplist_full.RDS
    Ignored:    data/toplist_full_DAR_6.RDS
    Ignored:    data/toplist_n45.RDS
    Ignored:    data/trimmed_seq_length.csv
    Ignored:    data/unclassified_full_set_peaks.RDS
    Ignored:    data/unclassified_n45_set_peaks.RDS
    Ignored:    data/xstreme/

Untracked files:
    Untracked:  analysis/Expressed_RNA_associations.Rmd
    Untracked:  analysis/LFC_corr.Rmd
    Untracked:  analysis/SVA.Rmd
    Untracked:  analysis/Tan2020.Rmd
    Untracked:  analysis/my_hc_filt_counts.csv
    Untracked:  code/IGV_snapshot_code.R
    Untracked:  code/LongDARlist.R
    Untracked:  code/TSSE.R
    Untracked:  code/clusterlikliehood_v_prior_prob.R
    Untracked:  code/just_for_Fun.R
    Untracked:  code/toplist_assembly.R
    Untracked:  output/cormotif_probability_45_list.csv
    Untracked:  output/cormotif_probability_all_6_list.csv
    Untracked:  setup.RData

Unstaged changes:
    Modified:   ATAC_learning.Rproj
    Modified:   analysis/Correlation_of_SNPnPEAK.Rmd
    Modified:   analysis/Figure_1.Rmd
    Modified:   analysis/GO_KEGG_analysis.Rmd
    Modified:   analysis/Raodah_mycount.Rmd
    Modified:   analysis/TE_analysis_ff.Rmd
    Modified:   analysis/final_four_analysis.Rmd
    Modified:   analysis/final_plot_attempt.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Correlation_of_GWASnPEAK.Rmd) and HTML (docs/Correlation_of_GWASnPEAK.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd a3bcc33 E. Renee Matthews 2025-02-26 wflow_publish("analysis/Correlation_of_GWASnPEAK.Rmd")
html 7ea74a3 E. Renee Matthews 2025-02-10 Build site.
Rmd 3a37987 E. Renee Matthews 2025-02-10 update heatmap legend
html 047da51 E. Renee Matthews 2025-02-07 Build site.
Rmd 7fbe175 E. Renee Matthews 2025-02-07 adding in Park data
html 5e56c1b E. Renee Matthews 2025-01-24 Build site.
Rmd 8a21094 E. Renee Matthews 2025-01-24 new final figure updates
html bdb9ba0 E. Renee Matthews 2025-01-21 Build site.
Rmd b3248cc E. Renee Matthews 2025-01-21 adding in protein data
html fb6aa7a E. Renee Matthews 2025-01-21 Build site.
Rmd 3eb76dd E. Renee Matthews 2025-01-21 adding in CELSR2
html a505a0a E. Renee Matthews 2025-01-17 Build site.
Rmd 4a1d2bf E. Renee Matthews 2025-01-17 updates to plots
html ae1542c E. Renee Matthews 2025-01-17 Build site.
Rmd e179f61 E. Renee Matthews 2025-01-17 updates with comments
html d09c7db E. Renee Matthews 2025-01-17 Build site.
Rmd 20ed2fe E. Renee Matthews 2025-01-17 additional analysis

library(tidyverse)
library(kableExtra)
library(broom)
library(RColorBrewer)
library("TxDb.Hsapiens.UCSC.hg38.knownGene")
library("org.Hs.eg.db")
library(rtracklayer)
library(ggfortify)
library(readr)
library(BiocGenerics)
library(gridExtra)
library(VennDiagram)
library(scales)
library(ggVennDiagram)
library(BiocParallel)
library(ggpubr)
library(edgeR)
library(genomation)
library(ggsignif)
library(plyranges)
library(ggrepel)
library(ComplexHeatmap)
library(cowplot)
library(smplot2)
library(readxl)
library(arrow)
library(circlize)

Notes to self(and anyone else who is reading this!):
This is me applying the same code from my correlation_of_SNPnPeak.rmd document.
Summary of what I am doing: 1: create a list of peaks within +/-20 kb, +/-10 kb, and +/- 5 kb of an RNA expressed gene TSS. (3 separate lists)
2: making a dataframe that has all ATAC 3 hour and 24 hr LFC by peak for later ease of use. 3: creating lists of gwas SNPs (HF and ARR lists only) that are either 1bp, 10kb, 20kb, or 50kb in length to determine impact of the SNP on surrounding peaks.

Collapsed_new_peaks <- read_delim("data/Final_four_data/collapsed_new_peaks.txt", delim = "\t", col_names = TRUE)

Collapsed_new_peaks_gr <- Collapsed_new_peaks %>% dplyr::select(chr:Peakid) %>% GRanges()

peak_10kb_neargenes <-
  Collapsed_new_peaks %>% 
    dplyr::filter(dist_to_NG<5000&dist_to_NG>-5000) %>% 
  distinct(Peakid, .keep_all = TRUE) %>% 
  dplyr::select(Peakid,NCBI_gene,SYMBOL)

peak_20kb_neargenes <-
  Collapsed_new_peaks %>% 
    dplyr::filter(dist_to_NG<10000&dist_to_NG>-10000) %>% 
  distinct(Peakid, .keep_all = TRUE) %>% 
  dplyr::select(Peakid,NCBI_gene,SYMBOL)

peak_40kb_neargenes <-
  Collapsed_new_peaks %>% 
    dplyr::filter(dist_to_NG<20000&dist_to_NG>-20000) %>% 
  distinct(Peakid, .keep_all = TRUE) %>% 
  dplyr::select(Peakid,NCBI_gene,SYMBOL)

RNA_median_3_lfc <- readRDS("data/other_papers/RNA_median_3_lfc.RDS")
RNA_median_24_lfc <- readRDS("data/other_papers/RNA_median_24_lfc.RDS")

ATAC_24_lfc <- read_csv("data/Final_four_data/median_24_lfc.csv") 
ATAC_3_lfc <- read_csv("data/Final_four_data/median_3_lfc.csv")

#### AS of 1/23/24, I am pulling updated gwas for HF and ARR (now the term is Atrial fib)  These are stored as RDS in the other papers folder
# saveRDS(gwas_ud_HF, "data/other_papers/HF_gwas_association_downloaded_2025_01_23_EFO_0003144_withChildTraits.RDS")
# saveRDS(gwas_ud_AF,"data/other_papers/AF_gwas_association_downloaded_2025_01_23_EFO_0000275.RDS")

gwas_HF <- readRDS("data/other_papers/HF_gwas_association_downloaded_2025_01_23_EFO_0003144_withChildTraits.RDS")

gwas_ARR <- readRDS("data/other_papers/AF_gwas_association_downloaded_2025_01_23_EFO_0000275.RDS")
Short_gwas_gr <-
  gwas_ARR %>% 
          distinct(SNPS,.keep_all = TRUE) %>%
          dplyr::select(CHR_ID, CHR_POS,SNPS) %>% 
          mutate(gwas="AF") %>% 
   rbind(gwas_HF %>% 
          distinct(SNPS,.keep_all = TRUE) %>%
          dplyr::select(CHR_ID, CHR_POS,SNPS) %>% 
          mutate(gwas="HF")) %>% 
  na.omit() %>% 
 mutate(seqnames=paste0("chr",CHR_ID), CHR_POS=as.numeric(CHR_POS)) %>% 
  na.omit() %>%
   mutate(start=CHR_POS, end=CHR_POS, width=1) %>% 
  GRanges()


Short_gwas_5k_gr <- 
    gwas_ARR %>% 
          distinct(SNPS,.keep_all = TRUE) %>%
          dplyr::select(CHR_ID, CHR_POS,SNPS) %>% 
          mutate(gwas="AF") %>% 
   rbind(gwas_HF %>% 
          distinct(SNPS,.keep_all = TRUE) %>%
          dplyr::select(CHR_ID, CHR_POS,SNPS) %>% 
          mutate(gwas="HF")) %>% 
  na.omit() %>% 
 mutate(seqnames=paste0("chr",CHR_ID), CHR_POS=as.numeric(CHR_POS)) %>% 
  na.omit() %>%
   mutate(start=CHR_POS-5000, end=CHR_POS+4999) %>% 
  GRanges()


Short_gwas_20k_gr <- 
    gwas_ARR %>% 
          distinct(SNPS,.keep_all = TRUE) %>%
          dplyr::select(CHR_ID, CHR_POS,SNPS) %>% 
          mutate(gwas="AF") %>% 
   rbind(gwas_HF %>% 
          distinct(SNPS,.keep_all = TRUE) %>%
          dplyr::select(CHR_ID, CHR_POS,SNPS) %>% 
          mutate(gwas="HF")) %>% 
  na.omit() %>% 
 mutate(seqnames=paste0("chr",CHR_ID), CHR_POS=as.numeric(CHR_POS)) %>% 
  na.omit() %>%
  mutate(start=(CHR_POS-10000),end=(CHR_POS+9999), width=20000) %>%
  distinct() %>% 
  GRanges()


Short_gwas_50k_gr <- 
    gwas_ARR %>% 
          distinct(SNPS,.keep_all = TRUE) %>%
          dplyr::select(CHR_ID, CHR_POS,SNPS) %>% 
          mutate(gwas="AF") %>% 
   rbind(gwas_HF %>% 
          distinct(SNPS,.keep_all = TRUE) %>%
          dplyr::select(CHR_ID, CHR_POS,SNPS) %>% 
          mutate(gwas="HF")) %>% 
  na.omit() %>% 
 mutate(seqnames=paste0("chr",CHR_ID), CHR_POS=as.numeric(CHR_POS)) %>% 
  na.omit() %>%
  mutate(start=(CHR_POS-25000),end=(CHR_POS+24999), width=50000) %>%
  distinct() %>% 
  GRanges()
 
gwas_peak_check <- join_overlap_intersect(Collapsed_new_peaks_gr,Short_gwas_gr) %>%
  as.data.frame()
# 
gwas_peak_check_10k <- join_overlap_intersect(Collapsed_new_peaks_gr,Short_gwas_5k_gr) %>%
  as.data.frame()
gwas_peak_check_20k <- join_overlap_intersect(Collapsed_new_peaks_gr,Short_gwas_20k_gr) %>% 
  as.data.frame()
 gwas_peak_check_50k <- join_overlap_intersect(Collapsed_new_peaks_gr,Short_gwas_50k_gr) %>% 
  as.data.frame()


ATAC_LFC <- Collapsed_new_peaks %>%
                 dplyr::select(Peakid) %>% 
  left_join(.,(ATAC_3_lfc %>% dplyr::select(peak, med_3h_lfc)), by=c("Peakid"="peak")) %>% 
  left_join(.,(ATAC_24_lfc %>% dplyr::select(peak, med_24h_lfc)), by=c("Peakid"="peak"))
            Short_gwas_gr %>% as.data.frame(
              
            )
     seqnames     start       end width strand CHR_ID   CHR_POS         SNPS
1        chr4 110485663 110485663     1      *      4 110485663  rs192667187
2        chr4 110491909 110491909     1      *      4 110491909  rs192833524
3       chr15  69714534  69714534     1      *     15  69714534    rs4776472
4       chr13  46259582  46259582     1      *     13  46259582     rs958546
5       chr11  99622442  99622442     1      *     11  99622442   rs10501920
6        chr1 203065778 203065778     1      *      1 203065778    rs3737883
7        chr4 173678308 173678308     1      *      4 173678308    rs4615152
8        chr1 170600176 170600176     1      *      1 170600176    rs3903239
9        chr4 110784612 110784612     1      *      4 110784612    rs6817105
10      chr10 103539854 103539854     1      *     10 103539854    rs6584555
11      chr16  73017721  73017721     1      *     16  73017721    rs2106261
12       chr6  32039119  32039119     1      *      6  32039119       rs6455
13       chr8  74007478  74007478     1      *      8  74007478   rs10504554
14      chr10  18705654  18705654     1      *     10  18705654   rs11015781
15       chr5 135024741 135024741     1      *      5 135024741      rs31209
16      chr12  25905670  25905670     1      *     12  25905670  rs117640426
17       chr1  10730740  10730740     1      *      1  10730740     rs284277
18       chr1  21956126  21956126     1      *      1  21956126    rs7529220
19       chr1  41078607  41078607     1      *      1  41078607    rs2885697
20       chr1  48844092  48844092     1      *      1  48844092   rs11590635
21       chr1  51069367  51069367     1      *      1  51069367  rs146518726
22       chr1 111840049 111840049     1      *      1 111840049   rs11102343
23       chr1 111916271 111916271     1      *      1 111916271   rs72694603
24       chr1 115755137 115755137     1      *      1 115755137    rs4073778
25       chr1 147783720 147783720     1      *      1 147783720   rs79187193
26       chr1 154425113 154425113     1      *      1 154425113   rs12118770
27       chr1 154741530 154741530     1      *      1 154741530    rs4999127
28       chr1 154828771 154828771     1      *      1 154828771    rs1218550
29       chr1 154836777 154836777     1      *      1 154836777   rs11264273
30       chr1 154837103 154837103     1      *      1 154837103   rs77328013
31       chr1 154851069 154851069     1      *      1 154851069    rs2878411
32       chr1 154890476 154890476     1      *      1 154890476   rs11264280
33       chr1 154919912 154919912     1      *      1 154919912  rs151107921
34       chr1 155013615 155013615     1      *      1 155013615    rs3753639
35       chr1 155051158 155051158     1      *      1 155051158   rs78266397
36       chr1 170151690 170151690     1      *      1 170151690     rs535709
37       chr1 170197680 170197680     1      *      1 170197680    rs7415755
38       chr1 170207618 170207618     1      *      1 170207618  rs113116849
39       chr1 170225682 170225682     1      *      1 170225682   rs72700118
40       chr1 170226090 170226090     1      *      1 170226090    rs4399218
41       chr1 170503391 170503391     1      *      1 170503391    rs1333135
42       chr1 170541318 170541318     1      *      1 170541318   rs17346300
43       chr1 170618199 170618199     1      *      1 170618199     rs577676
44       chr1 170733116 170733116     1      *      1 170733116   rs76074817
45       chr1 170793539 170793539     1      *      1 170793539   rs10919470
46       chr1 203057086 203057086     1      *      1 203057086   rs10753933
47       chr1 205716224 205716224     1      *      1 205716224     rs951366
48       chr2  25927904  25927904     1      *      2  25927904    rs6728684
49       chr2  61242991  61242991     1      *      2  61242991   rs11125871
50       chr2  65052671  65052671     1      *      2  65052671    rs2723064
51       chr2  69879700  69879700     1      *      2  69879700    rs6747542
52       chr2  86367364  86367364     1      *      2  86367364   rs72926475
53       chr2 126675889 126675889     1      *      2 126675889   rs28387148
54       chr2 145025041 145025041     1      *      2 145025041   rs56014517
55       chr4 111085761 111085761     1      *      4 111085761     rs297006
56       chr4 111172387 111172387     1      *      4 111172387   rs72674110
57       chr4 111257689 111257689     1      *      4 111257689    rs1472076
58       chr4 113507558 113507558     1      *      4 113507558   rs55754224
59       chr4 148031831 148031831     1      *      4 148031831    rs6839459
60       chr4 173553446 173553446     1      *      4 173553446   rs11933956
61       chr4 173721638 173721638     1      *      4 173721638   rs74500426
62       chr5 107091908 107091908     1      *      5 107091908    rs6596717
63       chr5 114401365 114401365     1      *      5 114401365     rs337705
64       chr5 115036973 115036973     1      *      5 115036973    rs7704089
65       chr5 128881021 128881021     1      *      5 128881021    rs1345608
66       chr5 137403961 137403961     1      *      5 137403961     rs739701
67       chr5 137676798 137676798     1      *      5 137676798    rs6888113
68       chr5 138029106 138029106     1      *      5 138029106   rs17171711
69       chr5 138322040 138322040     1      *      5 138322040  rs143731384
70       chr5 138444679 138444679     1      *      5 138444679    rs2240331
71       chr5 143438558 143438558     1      *      5 143438558    rs6580277
72       chr5 143569948 143569948     1      *      5 143569948    rs6896317
73       chr5 168959084 168959084     1      *      5 168959084   rs12188351
74       chr5 173173285 173173285     1      *      5 173173285    rs6890182
75       chr5 173237160 173237160     1      *      5 173237160    rs6882776
76       chr5 173965957 173965957     1      *      5 173965957   rs56180201
77       chr6  16415520  16415520     1      *      6  16415520   rs73366713
78       chr6  18361432  18361432     1      *      6  18361432   rs10949499
79       chr6  36679512  36679512     1      *      6  36679512    rs3176326
80       chr6  87111783  87111783     1      *      6  87111783    rs2031522
81       chr6 117559547 117559547     1      *      6 117559547     rs210634
82       chr6 118244502 118244502     1      *      6 118244502    rs4946333
83       chr6 118460100 118460100     1      *      6 118460100  rs139811148
84       chr6 118699842 118699842     1      *      6 118699842   rs62424001
85       chr6 121778006 121778006     1      *      6 121778006    rs9401451
86       chr6 122077095 122077095     1      *      6 122077095   rs72966339
87       chr6 148987899 148987899     1      *      6 148987899    rs1564602
88       chr6 149077964 149077964     1      *      6 149077964  rs117984853
89       chr6 149088724 149088724     1      *      6 149088724    rs1320575
90       chr7  14332384  14332384     1      *      7  14332384   rs55734480
91       chr7  28376208  28376208     1      *      7  28376208    rs6462079
92       chr7  74720592  74720592     1      *      7  74720592   rs35005436
93       chr7  92648802  92648802     1      *      7  92648802   rs56201652
94       chr7 116210621 116210621     1      *      7 116210621   rs11549785
95       chr7 116364407 116364407     1      *      7 116364407   rs11974466
96       chr7 116540796 116540796     1      *      7 116540796    rs4730751
97       chr7 116551247 116551247     1      *      7 116551247   rs11773845
98       chr7 128776990 128776990     1      *      7 128776990   rs55985730
99       chr7 150964321 150964321     1      *      7 150964321    rs7789146
100      chr8  11642399  11642399     1      *      8  11642399   rs35620480
101      chr8  18056461  18056461     1      *      8  18056461       rs7508
102      chr8  21964267  21964267     1      *      8  21964267    rs7834729
103      chr8 123539735 123539735     1      *      8 123539735   rs62521286
104      chr8 123540063 123540063     1      *      8 123540063    rs7835298
105      chr2 174563911 174563911     1      *      2 174563911   rs17507821
106      chr2 174690986 174690986     1      *      2 174690986   rs56181519
107      chr2 178546938 178546938     1      *      2 178546938    rs2288327
108      chr2 200304035 200304035     1      *      2 200304035   rs56326533
109      chr2 212395133 212395133     1      *      2 212395133    rs6738011
110      chr3  12800724  12800724     1      *      3  12800724    rs4642101
111      chr3  24421744  24421744     1      *      3  24421744   rs73041705
112      chr3  38668824  38668824     1      *      3  38668824    rs7373065
113      chr3  38736063  38736063     1      *      3  38736063   rs10428132
114      chr3  66403767  66403767     1      *      3  66403767   rs34080181
115      chr3  69357030  69357030     1      *      3  69357030   rs17005647
116      chr3  89440379  89440379     1      *      3  89440379    rs6771054
117      chr3 111835579 111835579     1      *      3 111835579   rs10804493
118      chr3 111985572 111985572     1      *      3 111985572   rs73232036
119      chr3 136095167 136095167     1      *      3 136095167    rs1278493
120      chr3 179455191 179455191     1      *      3 179455191    rs7612445
121      chr3 195080124 195080124     1      *      3 195080124   rs60902112
122      chr4  80243569  80243569     1      *      4  80243569    rs1458038
123      chr4 110401104 110401104     1      *      4 110401104  rs141752220
124      chr4 110485340 110485340     1      *      4 110485340   rs13118687
125      chr4 110524540 110524540     1      *      4 110524540   rs28705758
126      chr4 110546303 110546303     1      *      4 110546303     rs524788
127      chr4 110574086 110574086     1      *      4 110574086   rs10028326
128      chr4 110589415 110589415     1      *      4 110589415    rs1470618
129      chr4 110609843 110609843     1      *      4 110609843   rs72656974
130      chr4 110639637 110639637     1      *      4 110639637   rs62338990
131      chr4 110659017 110659017     1      *      4 110659017   rs60452787
132      chr4 110665288 110665288     1      *      4 110665288   rs17746631
133      chr4 110674360 110674360     1      *      4 110674360    rs2595117
134      chr4 110714136 110714136     1      *      4 110714136    rs2595082
135      chr4 110716779 110716779     1      *      4 110716779   rs78734303
136      chr4 110735436 110735436     1      *      4 110735436  rs112599895
137      chr4 110743002 110743002     1      *      4 110743002   rs17042098
138      chr4 110766821 110766821     1      *      4 110766821   rs77668866
139      chr4 110796991 110796991     1      *      4 110796991   rs13105878
140      chr4 110809291 110809291     1      *      4 110809291    rs7683219
141      chr4 110822697 110822697     1      *      4 110822697   rs28601812
142      chr4 110823850 110823850     1      *      4 110823850  rs113832645
143      chr4 110844339 110844339     1      *      4 110844339    rs6838973
144      chr4 110882594 110882594     1      *      4 110882594    rs4590107
145      chr4 110908811 110908811     1      *      4 110908811     rs561873
146      chr4 110941992 110941992     1      *      4 110941992   rs13149878
147      chr4 110978126 110978126     1      *      4 110978126   rs55947985
148      chr4 110992909 110992909     1      *      4 110992909     rs514739
149     chr14  76960182  76960182     1      *     14  76960182   rs10873298
150     chr15  73173136  73173136     1      *     15  73173136    rs1979409
151     chr15  73374914  73374914     1      *     15  73374914    rs7172038
152     chr15  80384583  80384583     1      *     15  80384583   rs12908004
153     chr15  80701947  80701947     1      *     15  80701947    rs2759301
154     chr15  98727906  98727906     1      *     15  98727906    rs6598541
155     chr16   1953015   1953015     1      *     16   1953015  rs140185678
156     chr16   1964282   1964282     1      *     16   1964282    rs2286466
157     chr16   2215270   2215270     1      *     16   2215270   rs77316573
158     chr16  73033862  73033862     1      *     16  73033862     rs876727
159     chr16  73053790  73053790     1      *     16  73053790    rs9930504
160     chr16  73091264  73091264     1      *     16  73091264  rs138619337
161     chr17   1406556   1406556     1      *     17   1406556    rs7225165
162     chr17   7549660   7549660     1      *     17   7549660    rs9899183
163     chr17  12709614  12709614     1      *     17  12709614   rs55941572
164     chr17  39893336  39893336     1      *     17  39893336    rs7359623
165     chr17  45579891  45579891     1      *     17  45579891   rs79742625
166     chr17  46797087  46797087     1      *     17  46797087    rs1563304
167     chr17  78777556  78777556     1      *     17  78777556   rs12604076
168     chr18  49000656  49000656     1      *     18  49000656     rs866245
169     chr21  34746814  34746814     1      *     21  34746814    rs2834618
170     chr22  18114735  18114735     1      *     22  18114735     rs464901
171     chr22  25768112  25768112     1      *     22  25768112     rs133902
172     chr22  25847092  25847092     1      *     22  25847092    rs8141828
173     chr10 110816937 110816937     1      *     10 110816937   rs10749053
174     chr11  19988745  19988745     1      *     11  19988745    rs4757877
175     chr11 121774297 121774297     1      *     11 121774297    rs2156664
176     chr11 128894675 128894675     1      *     11 128894675   rs76097649
177     chr12  24562114  24562114     1      *     12  24562114    rs2291437
178     chr12  24610889  24610889     1      *     12  24610889   rs10842379
179     chr12  24619033  24619033     1      *     12  24619033   rs10842383
180     chr12  26192593  26192593     1      *     12  26192593   rs17380837
181     chr12  32825503  32825503     1      *     12  32825503   rs12809354
182     chr12  56712154  56712154     1      *     12  56712154    rs2860482
183     chr12  69619635  69619635     1      *     12  69619635   rs71454237
184     chr12  69702594  69702594     1      *     12  69702594     rs775439
185     chr12  75844207  75844207     1      *     12  75844207   rs12426679
186     chr12 114254231 114254231     1      *     12 114254231    rs1247933
187     chr12 114355435 114355435     1      *     12 114355435     rs883079
188     chr12 114374821 114374821     1      *     12 114374821   rs11067089
189     chr13  22794804  22794804     1      *     13  22794804    rs9506925
190     chr13 113200401 113200401     1      *     13 113200401    rs3751413
191     chr14  23395595  23395595     1      *     14  23395595     rs422068
192     chr14  32455299  32455299     1      *     14  32455299    rs1957021
193     chr14  32514611  32514611     1      *     14  32514611    rs7140396
194     chr14  34704569  34704569     1      *     14  34704569   rs73241997
195     chr14  64213242  64213242     1      *     14  64213242    rs2738413
196     chr14  72782711  72782711     1      *     14  72782711   rs74884082
197     chr14  72888423  72888423     1      *     14  72888423    rs2110552
198      chr8 140730769 140730769     1      *      8 140730769    rs6994744
199      chr9  94835868  94835868     1      *      9  94835868    rs7019540
200      chr9  94951177  94951177     1      *      9  94951177   rs10821415
201      chr9  95036847  95036847     1      *      9  95036847     rs899268
202      chr9 136202927 136202927     1      *      9 136202927    rs2274115
203     chr10  63561387  63561387     1      *     10  63561387   rs12245149
204     chr10  73660422  73660422     1      *     10  73660422    rs7915134
205     chr10  75119277  75119277     1      *     10  75119277    rs7072512
206     chr10  76176912  76176912     1      *     10  76176912   rs10458662
207     chr10 101899844 101899844     1      *     10 101899844    rs1374471
208     chr10 102380845 102380845     1      *     10 102380845    rs3781295
209     chr10 102626337 102626337     1      *     10 102626337  rs149754618
210     chr10 103538219 103538219     1      *     10 103538219    rs7088041
211     chr10 103575399 103575399     1      *     10 103575399    rs3781370
212     chr10 103578969 103578969     1      *     10 103578969   rs77260060
213     chr10 103582915 103582915     1      *     10 103582915   rs11598047
214     chr10 103631542 103631542     1      *     10 103631542    rs7918134
215     chr10 103648362 103648362     1      *     10 103648362  rs141221125
216     chr10 103663571 103663571     1      *     10 103663571  rs138461584
217     chr10 103668394 103668394     1      *     10 103668394    rs3781339
218     chr10 103694357 103694357     1      *     10 103694357    rs3758576
219     chr10 103733419 103733419     1      *     10 103733419   rs11596328
220     chr10 103756892 103756892     1      *     10 103756892    rs7898224
221     chr10 103930273 103930273     1      *     10 103930273   rs12220140
222     chr10 103959161 103959161     1      *     10 103959161   rs35339759
223      chr1 164093291 164093291     1      *      1 164093291  rs528903211
224      chr1 164354848 164354848     1      *      1 164354848  rs750729995
225      chr1 165247437 165247437     1      *      1 165247437  rs747358876
226      chr1 165362063 165362063     1      *      1 165362063  rs745582874
227      chr2  20576675  20576675     1      *      2  20576675  rs182836018
228      chr4 102192657 102192657     1      *      4 102192657   rs77616117
229      chr8   9026103   9026103     1      *      8   9026103  rs189051215
230     chr13 100490655 100490655     1      *     13 100490655  rs768476991
231     chr13 100743542 100743542     1      *     13 100743542  rs535535747
232     chr17  17199699  17199699     1      *     17  17199699   rs12939857
233      chr1 111849738 111849738     1      *      1 111849738   rs12044963
234      chr1 170368215 170368215     1      *      1 170368215    rs4656762
235      chr2  65049602  65049602     1      *      2  65049602    rs2540951
236      chr4 110707883 110707883     1      *      4 110707883   rs16997168
237      chr4 173526992 173526992     1      *      4 173526992   rs10024737
238      chr5 114413763 114413763     1      *      5 114413763    rs1013168
239      chr7 116551643 116551643     1      *      7 116551643    rs9886216
240     chr10  76190062  76190062     1      *     10  76190062   rs16932995
241     chr10 103713072 103713072     1      *     10 103713072   rs10509768
242     chr12 114351421 114351421     1      *     12 114351421    rs2384407
243     chr16  72877507  72877507     1      *     16  72877507    rs7197197
244      chr2  25937505  25937505     1      *      2  25937505    rs7604968
245     chr10  67826634  67826634     1      *     10  67826634  rs138645114
246      chr4 173523751 173523751     1      *      4 173523751   rs17059534
247      chr4 110796911 110796911     1      *      4 110796911    rs6843082
248      chr4 110840331 110840331     1      *      4 110840331    rs3853445
249      chr1 203057463 203057463     1      *      1 203057463   rs17461925
250      chr2  65045228  65045228     1      *      2  65045228    rs2540953
251      chr4 173682953 173682953     1      *      4 173682953    rs7698692
252     chr10  20868692  20868692     1      *     10  20868692    rs2296610
253     chr10 103717405 103717405     1      *     10 103717405    rs2047036
254      chr5 140333293 140333293     1      *      5 140333293      rs13385
255      chr9  90890978  90890978     1      *      9  90890978    rs1675334
256      chr4 110793733 110793733     1      *      4 110793733    rs2220427
257      chr7 116560326 116560326     1      *      7 116560326    rs1049334
258     chr10 103565017 103565017     1      *     10 103565017   rs60572254
259      chr6 122093011 122093011     1      *      6 122093011   rs13219206
260      chr1 170643732 170643732     1      *      1 170643732     rs639652
261     chr12 111269073 111269073     1      *     12 111269073    rs4766566
262      chr4 110742777 110742777     1      *      4 110742777   rs78073007
263     chr19  47639489  47639489     1      *     19  47639489   rs11881441
264     chr20  38213512  38213512     1      *     20  38213512    rs3746471
265     chr22  21644940  21644940     1      *     22  21644940    rs5754508
266     chr22  41793403  41793403     1      *     22  41793403     rs139557
267      chr1  10736809  10736809     1      *      1  10736809     rs880315
268      chr1  51539068  51539068     1      *      1  51539068   rs12022114
269      chr1 147756741 147756741     1      *      1 147756741   rs11240121
270      chr1 170659114 170659114     1      *      1 170659114     rs680084
271      chr1 203063025 203063025     1      *      1 203063025    rs4950913
272      chr1 205722188 205722188     1      *      1 205722188    rs4951258
273      chr2  25937071  25937071     1      *      2  25937071    rs6546620
274      chr2  61449805  61449805     1      *      2  61449805    rs2694635
275      chr2  65057097  65057097     1      *      2  65057097    rs2540949
276      chr2  86356069  86356069     1      *      2  86356069   rs13387570
277      chr2 144924368 144924368     1      *      2 144924368   rs11679718
278      chr2 148042141 148042141     1      *      2 148042141   rs12992231
279      chr2 174648092 174648092     1      *      2 174648092    rs7574892
280      chr2 178548383 178548383     1      *      2 178548383    rs3731748
281      chr2 200315300 200315300     1      *      2 200315300    rs3820888
282      chr1    983237    983237     1      *      1    983237    rs4970418
283      chr1  15872556  15872556     1      *      1  15872556    rs9782984
284      chr1  38920042  38920042     1      *      1  38920042   rs75414548
285      chr1  99683752  99683752     1      *      1  99683752    rs1933723
286      chr4  70911218  70911218     1      *      4  70911218   rs12512502
287      chr4  82989559  82989559     1      *      4  82989559    rs6841049
288      chr5 140323701 140323701     1      *      5 140323701   rs17118812
289      chr6  22598030  22598030     1      *      6  22598030    rs7766436
290      chr6  75454873  75454873     1      *      6  75454873   rs12209223
291      chr6 134797951 134797951     1      *      6 134797951    rs4896104
292      chr7 105972290 105972290     1      *      7 105972290    rs2727757
293      chr8 117851173 117851173     1      *      8 117851173   rs17430357
294      chr9 116419515 116419515     1      *      9 116419515   rs17303101
295     chr10  32483806  32483806     1      *     10  32483806   rs11527634
296     chr10  49277389  49277389     1      *     10  49277389   rs76460895
297     chr10  79139212  79139212     1      *     10  79139212    rs1769758
298     chr11   3868829   3868829     1      *     11   3868829    rs7126870
299     chr11  14014642  14014642     1      *     11  14014642   rs10500790
300     chr11  95356718  95356718     1      *     11  95356718     rs517938
301     chr12  12733093  12733093     1      *     12  12733093   rs10845620
302     chr12 104098225 104098225     1      *     12 104098225    rs2629755
303     chr13  21537382  21537382     1      *     13  21537382   rs11841562
304     chr13  73946049  73946049     1      *     13  73946049    rs1886512
305     chr16  15808858  15808858     1      *     16  15808858    rs9284324
306     chr18  79396537  79396537     1      *     18  79396537    rs8096658
307      chr2 212386779 212386779     1      *      2 212386779   rs13019524
308      chr3  12800305  12800305     1      *      3  12800305    rs7650482
309      chr3  24431375  24431375     1      *      3  24431375   rs73032363
310      chr3  38725824  38725824     1      *      3  38725824    rs6801957
311      chr4  10102854  10102854     1      *      4  10102854   rs12640611
312      chr4  80248758  80248758     1      *      4  80248758   rs11099098
313      chr4 102791180 102791180     1      *      4 102791180     rs223449
314      chr4 110789811 110789811     1      *      4 110789811   rs17042175
315      chr4 148016386 148016386     1      *      4 148016386   rs10213171
316      chr4 173551270 173551270     1      *      4 173551270    rs4282143
317      chr5 114410483 114410483     1      *      5 114410483     rs337708
318      chr5 128854670 128854670     1      *      5 128854670    rs2012809
319      chr5 138107797 138107797     1      *      5 138107797     rs529526
320      chr5 168966222 168966222     1      *      5 168966222   rs77328981
321      chr5 173243742 173243742     1      *      5 173243742    rs6891790
322      chr6  16418331  16418331     1      *      6  16418331    rs9370893
323      chr6  18209878  18209878     1      *      6  18209878   rs34969716
324      chr6  34221089  34221089     1      *      6  34221089   rs12214804
325      chr6  87176617  87176617     1      *      6  87176617    rs7757330
326      chr6 118653635 118653635     1      *      6 118653635    rs9481842
327      chr6 133111184 133111184     1      *      6 133111184    rs6902225
328      chr6 149092383 149092383     1      *      6 149092383   rs78811127
329      chr7    855648    855648     1      *      7    855648    rs6461461
330      chr7  14334089  14334089     1      *      7  14334089   rs12154315
331      chr7  28377595  28377595     1      *      7  28377595    rs9639575
332      chr7  92620826  92620826     1      *      7  92620826      rs42044
333      chr7 116558567 116558567     1      *      7 116558567    rs1997571
334      chr7 150972888 150972888     1      *      7 150972888    rs3778872
335      chr8  11927032  11927032     1      *      8  11927032    rs6996342
336      chr8  18055243  18055243     1      *      8  18055243     rs399485
337      chr8  21947754  21947754     1      *      8  21947754    rs6998692
338      chr8 123597926 123597926     1      *      8 123597926   rs58847541
339      chr9  20235006  20235006     1      *      9  20235006    rs4977397
340     chr10  20953453  20953453     1      *     10  20953453    rs7910227
341     chr10  67854979  67854979     1      *     10  67854979   rs12360521
342     chr10  73654586  73654586     1      *     10  73654586   rs60212594
343     chr10 103556539 103556539     1      *     10 103556539   rs74154539
344     chr11 121783619 121783619     1      *     11 121783619    rs7946552
345     chr12  26195496  26195496     1      *     12  26195496  rs113819537
346     chr12  75845075  75845075     1      *     12  75845075    rs1565765
347     chr12 111193961 111193961     1      *     12 111193961    rs4766552
348     chr12 122827504 122827504     1      *     12 122827504     rs897393
349     chr12 124328132 124328132     1      *     12 124328132    rs3741508
350     chr12 132515028 132515028     1      *     12 132515028    rs4883571
351     chr13  22794695  22794695     1      *     13  22794695    rs3904323
352     chr13 113210523 113210523     1      *     13 113210523    rs2316443
353     chr14  32521231  32521231     1      *     14  32521231   rs11156751
354     chr15  70171653  70171653     1      *     15  70171653    rs2415081
355     chr15  98725621  98725621     1      *     15  98725621    rs4965430
356     chr16    714753    714753     1      *     16    714753    rs3809666
357     chr16   1954717   1954717     1      *     16   1954717    rs2815301
358     chr16  73014468  73014468     1      *     16  73014468   rs67329386
359     chr17   1408752   1408752     1      *     17   1408752   rs61248729
360     chr17   7511639   7511639     1      *     17   7511639    rs2071502
361     chr17  12715363  12715363     1      *     17  12715363   rs72811294
362     chr17  45942346  45942346     1      *     17  45942346     rs242557
363     chr17  47060667  47060667     1      *     17  47060667  rs145153053
364     chr17  70425662  70425662     1      *     17  70425662    rs1396517
365     chr18  48947822  48947822     1      *     18  48947822    rs9953366
366     chr20  62557186  62557186     1      *     20  62557186    rs6089752
367      chr1 170662622 170662622     1      *      1 170662622     rs629234
368      chr1 203062910 203062910     1      *      1 203062910   rs11579558
369      chr2  65128252  65128252     1      *      2  65128252   rs75251643
370      chr2 200298731 200298731     1      *      2 200298731    rs4673904
371      chr3  12831496  12831496     1      *      3  12831496   rs75387493
372      chr4 110795357 110795357     1      *      4 110795357   rs12644625
373      chr4 148015263 148015263     1      *      4 148015263   rs10213376
374      chr4 173542765 173542765     1      *      4 173542765  rs187693118
375      chr6 133122523 133122523     1      *      6 133122523    rs6941949
376      chr8 123622957 123622957     1      *      8 123622957    rs4871397
377      chr9  95129587  95129587     1      *      9  95129587  rs149672087
378     chr10  67504002  67504002     1      *     10  67504002  rs548764966
379     chr10 103574950 103574950     1      *     10 103574950  rs185158502
380     chr12  24648922  24648922     1      *     12  24648922    rs7973464
381     chr12  26443292  26443292     1      *     12  26443292   rs74763618
382     chr12 111171923 111171923     1      *     12 111171923    rs3809297
383     chr14  32442886  32442886     1      *     14  32442886   rs10138310
384     chr16  73019123  73019123     1      *     16  73019123    rs2359171
385     chr16  30608424  30608424     1      *     16  30608424 rs1055894680
386      chrX  23381384  23381384     1      *      X  23381384   rs73205368
387      chrX 138708418 138708418     1      *      X 138708418  rs778479352
388      chr2  65155127  65155127     1      *      2  65155127    rs9989843
389      chr4 173530848 173530848     1      *      4 173530848    rs2276940
390      chr6 133244597 133244597     1      *      6 133244597 rs1582725060
391      chr9  95006476  95006476     1      *      9  95006476  rs147288039
392     chr12  24650915  24650915     1      *     12  24650915   rs60634518
393     chr14  32505638  32505638     1      *     14  32505638    rs8010040
394      chr4 110776497 110776497     1      *      4 110776497   rs78229461
395     chr10  20913431  20913431     1      *     10  20913431    rs3802729
396     chr10 103575604 103575604     1      *     10 103575604  rs373205748
397      chr4 110789013 110789013     1      *      4 110789013    rs2200733
398     chr16  72995261  72995261     1      *     16  72995261    rs7193343
399      chr4 110799605 110799605     1      *      4 110799605   rs10033464
400     chr10  73661450  73661450     1      *     10  73661450   rs10824026
401     chr10 103720629 103720629     1      *     10 103720629   rs35176054
402      chr1  50525780  50525780     1      *      1  50525780   rs56202902
403      chr2 178624999 178624999     1      *      2 178624999   rs12614435
404      chr1 154858667 154858667     1      *      1 154858667   rs34245846
405      chr1 170224684 170224684     1      *      1 170224684   rs72700114
406      chr4 110782354 110782354     1      *      4 110782354   rs77831929
407     chr16  72998133  72998133     1      *     16  72998133    rs4404097
408      chr2 144977379 144977379     1      *      2 144977379   rs12621647
409     chr12 122843353 122843353     1      *     12 122843353   rs10773657
410     chr17  46789236  46789236     1      *     17  46789236     rs199497
411      chr1 111921382 111921382     1      *      1 111921382    rs1545300
412      chr2 126679788 126679788     1      *      2 126679788  rs113949548
413      chr6  75478614  75478614     1      *      6  75478614   rs12211255
414      chr7 150954728 150954728     1      *      7 150954728    rs2269001
415     chr10  67905124  67905124     1      *     10  67905124    rs7096385
416     chr10  76175587  76175587     1      *     10  76175587   rs11001667
417     chr10  63320967  63320967     1      *     10  63320967   rs10822156
418     chr12  24626557  24626557     1      *     12  24626557    rs4963776
419     chr12 132573624 132573624     1      *     12 132573624    rs6560886
420     chr13 113218398 113218398     1      *     13 113218398   rs35569628
421     chr14  23418974  23418974     1      *     14  23418974   rs28631169
422     chr15  63811578  63811578     1      *     15  63811578    rs7170477
423      chr3 179441371 179441371     1      *      3 179441371   rs75880040
424      chr4 102994461 102994461     1      *      4 102994461    rs3960788
425      chr6  87112623  87112623     1      *      6  87112623   rs13210074
426      chr7  28368690  28368690     1      *      7  28368690    rs6948592
427     chr17  78776206  78776206     1      *     17  78776206    rs7224711
428     chr18  51182178  51182178     1      *     18  51182178    rs8088085
429     chr10 101306718 101306718     1      *     10 101306718  rs144361223
430     chr12 111803962 111803962     1      *     12 111803962        rs671
431      chr1 170653968 170653968     1      *      1 170653968     rs588837
432      chr1 203059583 203059583     1      *      1 203059583    rs4590732
433      chr4 110789946 110789946     1      *      4 110789946    rs4540107
434      chr3 179452706 179452706     1      *      3 179452706    rs4855075
435      chr3  69350572  69350572     1      *      3  69350572    rs9310148
436      chr5 114423288 114423288     1      *      5 114423288     rs337684
437      chr5 123120403 123120403     1      *      5 123120403   rs17149944
438      chr5 138070140 138070140     1      *      5 138070140  rs141654122
439      chr5 173247874 173247874     1      *      5 173247874    rs6874428
440      chr6 117208687 117208687     1      *      6 117208687   rs11153653
441      chr6 118370282 118370282     1      *      6 118370282   rs77710920
442      chr6 122068760 122068760     1      *      6 122068760     rs868155
443      chr6  16413394  16413394     1      *      6  16413394    rs7770062
444      chr6  36678191  36678191     1      *      6  36678191     rs730506
445      chr6  87258847  87258847     1      *      6  87258847    rs9362415
446      chr8 123533862 123533862     1      *      8 123533862   rs78332318
447      chr8 140677101 140677101     1      *      8 140677101   rs13268718
448      chr8  17939376  17939376     1      *      8  17939376  rs139743358
449      chr1  10329982  10329982     1      *      1  10329982  rs551033057
450      chr1 111908825 111908825     1      *      1 111908825    rs2120436
451      chr1 115768197 115768197     1      *      1 115768197    rs4484922
452      chr1 154873058 154873058     1      *      1 154873058   rs11264278
453      chr2 178549906 178549906     1      *      2 178549906     rs890578
454      chr2 200306468 200306468     1      *      2 200306468   rs10931898
455      chr2  61138961  61138961     1      *      2  61138961  rs148785604
456      chr2  65056838  65056838     1      *      2  65056838   rs74181299
457      chr2  69918585  69918585     1      *      2  69918585    rs6546558
458      chr3 111873329 111873329     1      *      3 111873329  rs397874511
459     chr14  72894562  72894562     1      *     14  72894562    rs3814864
460     chr19  50399948  50399948     1      *     19  50399948  rs181513970
461     chr22  18114652  18114652     1      *     22  18114652     rs362021
462      chrX 119698761 119698761     1      *      X 119698761   rs77806999
463      chrX 138333934 138333934     1      *      X 138333934    rs2129742
464     chr15  73375705  73375705     1      *     15  73375705    rs7178084
465     chr17  39910014  39910014     1      *     17  39910014    rs1008723
466      chr8  21946224  21946224     1      *      8  21946224    rs7846485
467      chr8  76948760  76948760     1      *      8  76948760  rs113304312
468     chr10  63229171  63229171     1      *     10  63229171    rs7916868
469     chr10  67504839  67504839     1      *     10  67504839   rs10823051
470     chr11 128898062 128898062     1      *     11 128898062   rs78907918
471     chr11  14014033  14014033     1      *     11  14014033    rs7116230
472     chr11  19989899  19989899     1      *     11  19989899   rs10741807
473     chr12 111730205 111730205     1      *     12 111730205   rs11066015
474     chr12 124016178 124016178     1      *     12 124016178  rs556992087
475     chr12  24609567  24609567     1      *     12  24609567   rs11047527
476     chr12  32837485  32837485     1      *     12  32837485   rs34791177
477     chr12  56709370  56709370     1      *     12  56709370    rs7978685
478     chr12  69675839  69675839     1      *     12  69675839     rs710719
479     chr13  22792608  22792608     1      *     13  22792608    rs9510344
480     chr14  23392602  23392602     1      *     14  23392602     rs365990
481     chr14  32453874  32453874     1      *     14  32453874    rs8011444
482     chr10  76176818  76176818     1      *     10  76176818   rs10458660
483     chr11 121790799 121790799     1      *     11 121790799    rs4935786
484     chr15  57632516  57632516     1      *     15  57632516  rs147301839
485      chr1 154423470 154423470     1      *      1 154423470    rs6689306
486     chr18  51153152  51153152     1      *     18  51153152    rs9963878
487      chr4 110603473 110603473     1      *      4 110603473   rs61501369
488      chr4 111004500 111004500     1      *      4 111004500   rs79399769
489      chr4 111533139 111533139     1      *      4 111533139  rs138311480
490      chr4 112408189 112408189     1      *      4 112408189    rs7687819
491      chr5 173966108 173966108     1      *      5 173966108   rs28439930
492      chr2  25942659  25942659     1      *      2  25942659    rs7578393
493      chr2 145002786 145002786     1      *      2 145002786   rs67969609
494     chr15  73384923  73384923     1      *     15  73384923   rs74022964
495     chr17  39874911  39874911     1      *     17  39874911   rs11658278
496      chr1 147760632 147760632     1      *      1 147760632   rs10465885
497      chr3  38592651  38592651     1      *      3  38592651    rs7374540
498      chr4 110334761 110334761     1      *      4 110334761     rs244017
499      chr4 110675204 110675204     1      *      4 110675204    rs6850025
500      chr4 111244056 111244056     1      *      4 111244056    rs1532170
501      chr4 111683665 111683665     1      *      4 111683665  rs114904067
502      chr4 173526198 173526198     1      *      4 173526198   rs10520260
503     chr10 103517717 103517717     1      *     10 103517717   rs55693294
504     chr12  55662031  55662031     1      *     12  55662031   rs11614818
505     chr12  69677733  69677733     1      *     12  69677733     rs775498
506     chr16   1626803   1626803     1      *     16   1626803  rs118159104
507      chr6 118238495 118238495     1      *      6 118238495    rs3951016
508      chr6 122082413 122082413     1      *      6 122082413   rs13195459
509      chr2 212401279 212401279     1      *      2 212401279   rs35544454
510      chr3  38730434  38730434     1      *      3  38730434    rs6790396
511      chr4 102969823 102969823     1      *      4 102969823   rs10006327
512      chr4 110778529 110778529     1      *      4 110778529   rs67249485
513      chr4 113527500 113527500     1      *      4 113527500    rs6829664
514      chr4 173720033 173720033     1      *      4 173720033   rs12648245
515      chr5 138084300 138084300     1      *      5 138084300    rs2040862
516     chr11 123009573 123009573     1      *     11 123009573   rs12420422
517     chr12   3060327   3060327     1      *     12   3060327   rs12310617
518      chr2   9956965   9956965     1      *      2   9956965   rs16867253
519      chr2 146120964 146120964     1      *      2 146120964     rs222826
520     chr14  92945686  92945686     1      *     14  92945686    rs4905014
521      chr3 123019460 123019460     1      *      3 123019460    rs7632505
522     chr16  72963084  72963084     1      *     16  72963084    rs7190256
523     chr17   7718146   7718146     1      *     17   7718146    rs3803802
524      chr7  19177581  19177581     1      *      7  19177581   rs17140821
525     chr18   8522684   8522684     1      *     18   8522684    rs8082812
526      chr9  22125348  22125348     1      *      9  22125348    rs1333048
527     chr21  41463567  41463567     1      *     21  41463567     rs460976
528     chr10  26969741  26969741     1      *     10  26969741    rs7081476
529     chr10 112996282 112996282     1      *     10 112996282    rs4506565
530      chr1  11792459  11792459     1      *      1  11792459   rs17375901
531      chr4 110787131 110787131     1      *      4 110787131   rs17042171
532      chr1 154841877 154841877     1      *      1 154841877   rs13376333
533     chr20  47796832  47796832     1      *     20  47796832   rs13038095
534     chr19  19296909  19296909     1      *     19  19296909   rs10401969
535     chr19  44919689  44919689     1      *     19  44919689    rs4420638
536     chr19  44744370  44744370     1      *     19  44744370    rs4803750
537      chr1 109275684 109275684     1      *      1 109275684     rs629301
538      chr2  21065449  21065449     1      *      2  21065449     rs562338
539      chr2  21176344  21176344     1      *      2  21176344     rs478442
540      chr2  27263727  27263727     1      *      2  27263727    rs6759518
541      chr2  27412596  27412596     1      *      2  27412596    rs1728918
542      chr2  27518370  27518370     1      *      2  27518370     rs780094
543      chr2 215086907 215086907     1      *      2 215086907     rs940274
544      chr4 102363708 102363708     1      *      4 102363708   rs13114738
545      chr4 110810780 110810780     1      *      4 110810780    rs6533530
546      chr4 139829967 139829967     1      *      4 139829967    rs1869717
547      chr5  75329662  75329662     1      *      5  75329662    rs7703051
548      chr5  75463358  75463358     1      *      5  75463358    rs4704221
549      chr5  75584065  75584065     1      *      5  75584065    rs5744680
550      chr5  75701931  75701931     1      *      5  75701931   rs10057967
551      chr7  73462836  73462836     1      *      7  73462836    rs2074755
552      chr7  73637727  73637727     1      *      7  73637727     rs799165
553     chr11  61803311  61803311     1      *     11  61803311     rs174547
554     chr11 116778201 116778201     1      *     11 116778201     rs964184
555     chr12  89656726  89656726     1      *     12  89656726   rs12579302
556      chr8  20008763  20008763     1      *      8  20008763     rs765547
557      chr8 125466108 125466108     1      *      8 125466108    rs2980853
558      chr9  22125504  22125504     1      *      9  22125504    rs1333049
559     chr20  41147406  41147406     1      *     20  41147406     rs760762
560     chr20  41322165  41322165     1      *     20  41322165    rs2866611
561     chr11 117037567 117037567     1      *     11 117037567    rs7115242
562     chr12 122479003 122479003     1      *     12 122479003   rs12369179
563     chr15  58435126  58435126     1      *     15  58435126     rs261332
564     chr16  53786615  53786615     1      *     16  53786615    rs9939609
565     chr16  56956804  56956804     1      *     16  56956804     rs247617
566      chr1 154841792 154841792     1      *      1 154841792    rs6666258
567      chr7 116546187 116546187     1      *      7 116546187    rs3807989
568     chr14  64214130  64214130     1      *     14  64214130    rs1152591
569     chr15  73359833  73359833     1      *     15  73359833    rs7164883
570     chr11 128894676 128894676     1      *     11 128894676   rs75190942
571     chr15  57351688  57351688     1      *     15  57351688    rs2921421
572      chr6 122142045 122142045     1      *      6 122142045   rs12664873
573     chr15  73376665  73376665     1      *     15  73376665    rs7183206
574      chr4 110767596 110767596     1      *      4 110767596    rs2723334
575     chr10  73661890  73661890     1      *     10  73661890    rs7394190
576     chr10 103562124 103562124     1      *     10 103562124   rs60848348
577     chr16  73025260  73025260     1      *     16  73025260    rs4499262
578      chr2  69811100  69811100     1      *      2  69811100    rs6546550
579     chr12  32820006  32820006     1      *     12  32820006    rs1454934
580      chr1 154845927 154845927     1      *      1 154845927   rs36004974
581      chr1 170622169 170622169     1      *      1 170622169     rs651386
582      chr4 110791276 110791276     1      *      4 110791276    rs2129977
583      chr9  94730238  94730238     1      *      9  94730238    rs7026071
584      chr5 114412874 114412874     1      *      5 114412874     rs337711
585      chr1 170669192 170669192     1      *      1 170669192     rs520525
586      chr7 116558774 116558774     1      *      7 116558774    rs1997572
587      chr1 170216500 170216500     1      *      1 170216500   rs10800507
588      chr2  69749252  69749252     1      *      2  69749252   rs62133983
589      chr5 137912251 137912251     1      *      5 137912251    rs6864727
590      chr6 118252898 118252898     1      *      6 118252898     rs281868
591      chr4 110789386 110789386     1      *      4 110789386   rs61303432
592      chr7 116519907 116519907     1      *      7 116519907    rs2109514
593      chr6  34272799  34272799     1      *      6  34272799    rs1307274
594      chr6 122070990 122070990     1      *      6 122070990   rs13191450
595      chr4 110733185 110733185     1      *      4 110733185  rs143269342
596      chr1 111919280 111919280     1      *      1 111919280    rs1443926
597     chr15  63512308  63512308     1      *     15  63512308  rs146311723
598      chr4 110859850 110859850     1      *      4 110859850  rs149829837
599      chr6 118245024 118245024     1      *      6 118245024   rs17079881
600      chr5 143270839 143270839     1      *      5 143270839     rs174048
601      chr3 111869032 111869032     1      *      3 111869032   rs17490701
602      chr7 116514132 116514132     1      *      7 116514132   rs17516287
603      chr4 110815726 110815726     1      *      4 110815726   rs17570669
604     chr11  19988967  19988967     1      *     11  19988967    rs1822273
605      chr1  10107367  10107367     1      *      1  10107367  rs187585530
606      chr6 117559179 117559179     1      *      6 117559179     rs210632
607      chr7  28373568  28373568     1      *      7  28373568    rs6462078
608     chr10  73660356  73660356     1      *     10  73660356    rs6480708
609      chr2  69884579  69884579     1      *      2  69884579    rs6546553
610      chr2  61541610  61541610     1      *      2  61541610    rs6742276
611      chr3  12799435  12799435     1      *      3  12799435    rs6810325
612      chr4 110775495 110775495     1      *      4 110775495    rs6847935
613      chr6  87146285  87146285     1      *      6  87146285    rs6907805
614      chr8 140752560 140752560     1      *      8 140752560    rs6993266
615      chr5 114400719 114400719     1      *      5 114400719     rs716845
616     chr17  70341044  70341044     1      *     17  70341044    rs7219869
617     chr20  62560732  62560732     1      *     20  62560732    rs7269123
618     chr22  18117816  18117816     1      *     22  18117816     rs465276
619      chr9 106870072 106870072     1      *      9 106870072    rs4743034
620      chr3 179450674 179450674     1      *      3 179450674    rs4855074
621      chr1 205748695 205748695     1      *      1 205748695    rs4951261
622      chr1 170665943 170665943     1      *      1 170665943     rs503706
623      chr1 170648165 170648165     1      *      1 170648165     rs608930
624     chr15  63507814  63507814     1      *     15  63507814   rs62011291
625      chr7 107215557 107215557     1      *      7 107215557   rs62483627
626      chr3 111873991 111873991     1      *      3 111873991   rs73228543
627      chr8 134800173 134800173     1      *      8 134800173    rs7460121
628      chr7  74696373  74696373     1      *      7  74696373   rs74910854
629      chr4 110737238 110737238     1      *      4 110737238   rs75021220
630      chr6  36677811  36677811     1      *      6  36677811     rs762624
631      chr3  89485227  89485227     1      *      3  89485227    rs7632427
632      chr3 196767831 196767831     1      *      3 196767831    rs9872035
633      chr8 124847575 124847575     1      *      8 124847575   rs35006907
634      chr2 178556567 178556567     1      *      2 178556567   rs35504893
635     chr12 123962792 123962792     1      *     12 123962792    rs3789967
636      chr4  10117121  10117121     1      *      4  10117121    rs3822259
637     chr17  70351197  70351197     1      *     17  70351197    rs3844438
638      chr8 140736225 140736225     1      *      8 140736225    rs4355822
639      chr9  94886305  94886305     1      *      9  94886305    rs4385527
640     chr16   1955981   1955981     1      *     16   1955981      rs30252
641      chr3  66361431  66361431     1      *      3  66361431     rs332388
642      chr1 154839924 154839924     1      *      1 154839924   rs34292822
643      chr5 138098483 138098483     1      *      5 138098483   rs34750263
644      chr2 200330879 200330879     1      *      2 200330879     rs295114
645     chr12  69703684  69703684     1      *     12  69703684   rs35349325
646     chr17  46969002  46969002     1      *     17  46969002   rs76774446
647     chr10  63556040  63556040     1      *     10  63556040    rs7919685
648     chr13  22797335  22797335     1      *     13  22797335    rs7987944
649     chr17   7531723   7531723     1      *     17   7531723    rs8073937
650     chr14  76961126  76961126     1      *     14  76961126    rs8181996
651     chr11 121758299 121758299     1      *     11 121758299     rs949078
652     chr13  22799267  22799267     1      *     13  22799267    rs9580438
653     chr17   7516977   7516977     1      *     17   7516977    rs9675122
654      chr4 148025539 148025539     1      *      4 148025539   rs10027347
655      chr7    836590    836590     1      *      7    836590   rs11768850
656     chr10 101845957 101845957     1      *     10 101845957    rs1044258
657      chr5 138052751 138052751     1      *      5 138052751   rs10479177
658      chr1 170224718 170224718     1      *      1 170224718   rs12122060
659      chr1 170724397 170724397     1      *      1 170724397   rs12142379
660     chr12 123934127 123934127     1      *     12 123934127   rs12298484
661     chr14  76960368  76960368     1      *     14  76960368   rs10873299
662     chr12  75830037  75830037     1      *     12  75830037   rs11180703
663     chr12 114653212 114653212     1      *     12 114653212   rs12810346
664     chr15  98744146  98744146     1      *     15  98744146   rs12908437
665      chr2  69889883  69889883     1      *      2  69889883   rs10165883
666      chr7  92655809  92655809     1      *      7  92655809   rs11773884
667     chr14  34717488  34717488     1      *     14  34717488   rs11846704
668      chr9 124415987 124415987     1      *      9 124415987   rs10760361
669      chr1 154451288 154451288     1      *      1 154451288   rs12129500
670     chr10 102230055 102230055     1      *     10 102230055   rs10786662
671      chr6 133153164 133153164     1      *      6 133153164   rs12208899
672     chr15  70161800  70161800     1      *     15  70161800   rs12591736
673      chr2 148035096 148035096     1      *      2 148035096   rs12992412
674     chr20   6591367   6591367     1      *     20   6591367    rs2145274
675     chr14  32512278  32512278     1      *     14  32512278    rs2145587
676      chr3  66384219  66384219     1      *      3  66384219    rs2306272
677      chr2  61548229  61548229     1      *      2  61548229    rs2441380
678      chr4 110631977 110631977     1      *      4 110631977    rs2595104
679     chr11  19988805  19988805     1      *     11  19988805    rs2625322
680     chr10 116816095 116816095     1      *     10 116816095     rs740363
681      chr6 160589086 160589086     1      *      6 160589086   rs10455872
682      chr4  45180510  45180510     1      *      4  45180510   rs10938397
683     chr18  23567545  23567545     1      *     18  23567545    rs1652348
684     chr18  60067625  60067625     1      *     18  60067625    rs7234864
685     chr16  53765595  53765595     1      *     16  53765595    rs9937053
686      chr4 110783043 110783043     1      *      4 110783043    rs2129981
687     chr12  42859612  42859612     1      *     12  42859612    rs1520832
688      chr2 126905321 126905321     1      *      2 126905321   rs13418717
689      chr9  18109237  18109237     1      *      9  18109237    rs2210327
690     chr12  29951209  29951209     1      *     12  29951209    rs2046383
691     chr12  91911494  91911494     1      *     12  91911494   rs17019682
692     chr15  63445726  63445726     1      *     15  63445726   rs10519210
693      chr7  27290437  27290437     1      *      7  27290437   rs13225783
694      chr9  27533986  27533986     1      *      9  27533986   rs10812610
695     chr13  75202132  75202132     1      *     13  75202132     rs548097
696     chr19   3159771   3159771     1      *     19   3159771   rs11880198
697     chr12  58865846  58865846     1      *     12  58865846   rs11172782
698      chr8  82756885  82756885     1      *      8  82756885    rs6473383
699     chr10  89204857  89204857     1      *     10  89204857   rs11203032
700     chr11 126158822 126158822     1      *     11 126158822     rs563519
701      chr1 220855166 220855166     1      *      1 220855166   rs11118620
702      chr3 165562421 165562421     1      *      3 165562421    rs1523288
703      chr9  95085566  95085566     1      *      9  95085566  rs137908951
704     chr12 115118502 115118502     1      *     12 115118502      rs35427
705      chr4 110776497 110776497     1      *      4 110776497   rs78229461
706      chr6  22569405  22569405     1      *      6  22569405    rs2073030
707      chr6  36665292  36665292     1      *      6  36665292    rs4713999
708      chr9 133276354 133276354     1      *      9 133276354     rs600038
709      chr9  22122061  22122061     1      *      9  22122061   rs35831924
710     chr15  33904646  33904646     1      *     15  33904646  rs187108425
711     chr16  73014468  73014468     1      *     16  73014468   rs67329386
712     chr18  58252666  58252666     1      *     18  58252666   rs11660748
713     chr10  73657491  73657491     1      *     10  73657491    rs4746140
714      chr1   6219310   6219310     1      *      1   6219310     rs846111
715      chr3  14232793  14232793     1      *      3  14232793   rs56281979
716      chr2 178898903 178898903     1      *      2 178898903    rs7564756
717     chr12 111446804 111446804     1      *     12 111446804    rs3184504
718     chr17  66311864  66311864     1      *     17  66311864    rs4328478
719      chr7 128846309 128846309     1      *      7 128846309   rs34373805
720     chr12  26195496  26195496     1      *     12  26195496  rs113819537
721     chr20  33701957  33701957     1      *     20  33701957   rs57668191
722     chr14  89416793  89416793     1      *     14  89416793   rs71415423
723     chr10 119532469 119532469     1      *     10 119532469  rs148802390
724     chr18  58289633  58289633     1      *     18  58289633   rs10871753
725      chr1  15804829  15804829     1      *      1  15804829  rs113151268
726      chr2 178882341 178882341     1      *      2 178882341  rs142556838
727      chr2 178846649 178846649     1      *      2 178846649    rs2220127
728      chr3 134736952 134736952     1      *      3 134736952   rs13092177
729      chr2  71451390  71451390     1      *      2  71451390    rs4852257
730     chr10 119696417 119696417     1      *     10 119696417   rs11199073
731      chr3  14376944  14376944     1      *      3  14376944   rs34234056
732      chr1   6188122   6188122     1      *      1   6188122  rs114300540
733      chr6  32668263  32668263     1      *      6  32668263    rs9274626
734      chr3  49173299  49173299     1      *      3  49173299    rs7617480
735     chr17  45949373  45949373     1      *     17  45949373     rs242562
736     chr12 115117725 115117725     1      *     12 115117725      rs35432
737     chr17  46969002  46969002     1      *     17  46969002   rs76774446
738      chr6 118346359 118346359     1      *      6 118346359   rs11153730
739      chr3 158569666 158569666     1      *      3 158569666    rs2276773
740     chr17   1466275   1466275     1      *     17   1466275    rs8069650
741     chr10 119667597 119667597     1      *     10 119667597     rs196321
742     chr16   2103932   2103932     1      *     16   2103932    rs9938566
743      chr8 140625230 140625230     1      *      8 140625230    rs1962104
744     chr19  41439932  41439932     1      *     19  41439932   rs13346603
745      chr1  45555123  45555123     1      *      1  45555123     rs666720
746      chr2  36922355  36922355     1      *      2  36922355   rs11124554
747      chr5 139426616 139426616     1      *      5 139426616   rs11242465
748      chr7 128825592 128825592     1      *      7 128825592   rs57573379
749      chr4  16027243  16027243     1      *      4  16027243    rs1850507
750     chr15  84145450  84145450     1      *     15  84145450    rs4842937
751     chr16    940791    940791     1      *     16    940791   rs12598405
752     chr17  55297249  55297249     1      *     17  55297249   rs12452367
753      chr6  54163271  54163271     1      *      6  54163271    rs6915002
754     chr19  45812551  45812551     1      *     19  45812551   rs10421891
755      chr1 236688982 236688982     1      *      1 236688982   rs12724121
756      chr2 200315300 200315300     1      *      2 200315300    rs3820888
757     chr15  84806000  84806000     1      *     15  84806000   rs35630683
758      chr8 124847608 124847608     1      *      8 124847608   rs34866937
759     chr22  23836092  23836092     1      *     22  23836092    rs5760061
760     chr16  53794154  53794154     1      *     16  53794154   rs17817964
761      chr6  36677811  36677811     1      *      6  36677811     rs762624
762     chr17   1370588   1370588     1      *     17   1370588  rs117510670
763      chr2 178975161 178975161     1      *      2 178975161   rs10497529
764      chr2 178888822 178888822     1      *      2 178888822    rs1873164
765     chr10 119611816 119611816     1      *     10 119611816   rs11594596
766      chr3  14250179  14250179     1      *      3  14250179   rs11710541
767      chr1  16021917  16021917     1      *      1  16021917     rs945425
768      chr2 178649706 178649706     1      *      2 178649706    rs2562845
769      chr4 110787848 110787848     1      *      4 110787848    rs1906592
770     chr10 119656173 119656173     1      *     10 119656173   rs72840788
771     chr11  43607199  43607199     1      *     11  43607199    rs4755720
772      chr6  22598030  22598030     1      *      6  22598030    rs7766436
773      chr2    632592    632592     1      *      2    632592   rs12992672
774     chr12 124824136 124824136     1      *     12 124824136   rs10846742
775      chr4 113463172 113463172     1      *      4 113463172   rs17620390
776      chr1  50281325  50281325     1      *      1  50281325   rs72688573
777      chr4  45184122  45184122     1      *      4  45184122   rs10938398
778      chr7  75470858  75470858     1      *      7  75470858    rs6945340
779      chr2 144500878 144500878     1      *      2 144500878    rs7564469
780     chr12 106865692 106865692     1      *     12 106865692    rs7977247
781      chr2  59078490  59078490     1      *      2  59078490    rs1016287
782     chr14  29700781  29700781     1      *     14  29700781     rs959388
783      chr4 102291689 102291689     1      *      4 102291689     rs233806
784      chr2  37006122  37006122     1      *      2  37006122   rs17038861
785      chr6  79075890  79075890     1      *      6  79075890    rs9352691
786     chr19  45824573  45824573     1      *     19  45824573   rs10520390
787      chr1  66524036  66524036     1      *      1  66524036   rs79682748
788      chr9  22102166  22102166     1      *      9  22102166    rs7859727
789      chr4 110748064 110748064     1      *      4 110748064    rs2634071
790     chr16  53768582  53768582     1      *     16  53768582   rs11642015
791      chr6  36679512  36679512     1      *      6  36679512    rs3176326
792      chr1 109278889 109278889     1      *      1 109278889     rs602633
793      chr1  16004613  16004613     1      *      1  16004613    rs1739833
794     chr10 119667372 119667372     1      *     10 119667372   rs17617337
795     chr10  73647154  73647154     1      *     10  73647154   rs34163229
796     chr17  67840105  67840105     1      *     17  67840105  rs113437066
797      chr5 137671073 137671073     1      *      5 137671073   rs11746435
798     chr21  29230673  29230673     1      *     21  29230673    rs2832275
799      chr7  74708526  74708526     1      *      7  74708526    rs7795282
800     chr16  69532406  69532406     1      *     16  69532406   rs12933292
801     chr17   2297577   2297577     1      *     17   2297577     rs216199
802     chr12 111762346 111762346     1      *     12 111762346    rs2013002
803      chr1 222632876 222632876     1      *      1 222632876   rs17163345
804     chr17  39668086  39668086     1      *     17  39668086    rs3764351
805      chr6  12903725  12903725     1      *      6  12903725    rs9349379
806     chr18  38953012  38953012     1      *     18  38953012    rs4327120
807     chr11 123009573 123009573     1      *     11 123009573   rs12420422
808     chr12   3060327   3060327     1      *     12   3060327   rs12310617
809      chr2   9956965   9956965     1      *      2   9956965   rs16867253
810      chr2 146120964 146120964     1      *      2 146120964     rs222826
811     chr14  92945686  92945686     1      *     14  92945686    rs4905014
812      chr3 123019460 123019460     1      *      3 123019460    rs7632505
813     chr16  72963084  72963084     1      *     16  72963084    rs7190256
814     chr17   7718146   7718146     1      *     17   7718146    rs3803802
815      chr7  19177581  19177581     1      *      7  19177581   rs17140821
816     chr18   8522684   8522684     1      *     18   8522684    rs8082812
817      chr9  22125348  22125348     1      *      9  22125348    rs1333048
818     chr21  41463567  41463567     1      *     21  41463567     rs460976
819     chr10  26969741  26969741     1      *     10  26969741    rs7081476
820     chr10 112996282 112996282     1      *     10 112996282    rs4506565
821     chr22  22522600  22522600     1      *     22  22522600     rs361894
822     chr22  22521228  22521228     1      *     22  22521228     rs362079
823      chr6  22571185  22571185     1      *      6  22571185    rs3734214
824      chr2  86536881  86536881     1      *      2  86536881    rs4832298
825      chr6 160584578 160584578     1      *      6 160584578   rs55730499
826     chr16  53772541  53772541     1      *     16  53772541   rs56094641
827      chr7  75432493  75432493     1      *      7  75432493    rs6944634
828      chr2    630075    630075     1      *      2    630075   rs73139123
829      chr2  36920832  36920832     1      *      2  36920832    rs7605601
830      chr4 110843816 110843816     1      *      4 110843816    rs7680240
831     chr11  43612095  43612095     1      *     11  43612095    rs7936836
832      chr1  51332122  51332122     1      *      1  51332122   rs80061532
833      chr6  78635532  78635532     1      *      6  78635532    rs9361413
834      chr4 110707472 110707472     1      *      4 110707472     rs981150
835      chr9  22025494  22025494     1      *      9  22025494   rs10738604
836     chr12 111395984 111395984     1      *     12 111395984   rs10774624
837     chr12 112172910 112172910     1      *     12 112172910   rs11066188
838     chr13  18618893  18618893     1      *     13  18618893  rs114352564
839      chr1  50509555  50509555     1      *      1  50509555  rs116626164
840      chr5 137676482 137676482     1      *      5 137676482   rs11745324
841      chr7 144116260 144116260     1      *      7 144116260  rs117540300
842     chr16  72972675  72972675     1      *     16  72972675   rs12325072
843     chr18  60099280  60099280     1      *     18  60099280    rs1539952
844     chr14  34878306  34878306     1      *     14  34878306    rs1712355
845      chr4 110927114 110927114     1      *      4 110927114   rs17513625
846     chr10  18226070  18226070     1      *     10  18226070    rs1757223
847     chr18  23574060  23574060     1      *     18  23574060    rs1788826
848      chr4 110665822 110665822     1      *      4 110665822    rs1823290
849     chr16  53814649  53814649     1      *     16  53814649    rs1861867
850      chr1  61420374  61420374     1      *      1  61420374    rs1997997
851     chr17   2300159   2300159     1      *     17   2300159     rs216193
852      chr7  92635679  92635679     1      *      7  92635679    rs2282979
853     chr17  78802073  78802073     1      *     17  78802073    rs2306527
854      chr1  16021039  16021039     1      *      1  16021039   rs28579893
855     chr18  33675954  33675954     1      *     18  33675954   rs34728432
856      chr7  74720592  74720592     1      *      7  74720592   rs35005436
857     chr18   7165316   7165316     1      *     18   7165316   rs76345468
858     chr22  46417046  46417046     1      *     22  46417046  rs190258023
859     chr18   7165736   7165736     1      *     18   7165736  rs147545594
860      chr8  63615955  63615955     1      *      8  63615955  rs187251765
861      chr2 225229677 225229677     1      *      2 225229677  rs111641830
862     chr12 119704045 119704045     1      *     12 119704045  rs371848093
863      chr7   6499355   6499355     1      *      7   6499355  rs142659860
864     chr12  75899702  75899702     1      *     12  75899702  rs115146744
865      chr7   6508129   6508129     1      *      7   6508129  rs556723179
866     chr15  75879549  75879549     1      *     15  75879549   rs76806081
867     chr12  75895517  75895517     1      *     12  75895517  rs114782882
868     chr16  50121093  50121093     1      *     16  50121093  rs552214848
869     chr11    824293    824293     1      *     11    824293  rs114512805
870     chr16  87929642  87929642     1      *     16  87929642  rs139731147
871     chr16  24501229  24501229     1      *     16  24501229  rs116598880
872     chr19  32170310  32170310     1      *     19  32170310   rs76302892
873     chr12  89962714  89962714     1      *     12  89962714  rs113516553
874     chr12  89965597  89965597     1      *     12  89965597  rs113983785
875     chr12  89966409  89966409     1      *     12  89966409  rs111371067
876      chr5 166138903 166138903     1      *      5 166138903   rs75729550
877     chr13  73906571  73906571     1      *     13  73906571  rs146264611
878      chr3 189573162 189573162     1      *      3 189573162  rs144563425
879      chr6  16264087  16264087     1      *      6  16264087  rs149649230
880     chr18   7162907   7162907     1      *     18   7162907   rs74972015
881     chr10  77152423  77152423     1      *     10  77152423   rs79087352
882      chr6  36799290  36799290     1      *      6  36799290    rs9470398
883     chr18   7165714   7165714     1      *     18   7165714   rs75262741
884     chr22  46417215  46417215     1      *     22  46417215  rs148416395
885      chr2 225227882 225227882     1      *      2 225227882  rs189536067
886      chr5 170374105 170374105     1      *      5 170374105  rs144322502
887      chr2 225229816 225229816     1      *      2 225229816  rs112372754
888      chr1  18783514  18783514     1      *      1  18783514  rs113459855
889      chr7   6501383   6501383     1      *      7   6501383   rs73059342
890      chr5 166124695 166124695     1      *      5 166124695  rs114101629
891      chr1 226505234 226505234     1      *      1 226505234  rs143554223
892      chr1 226518546 226518546     1      *      1 226518546  rs148467525
893     chr16  13710372  13710372     1      *     16  13710372   rs28523422
894      chr1  18783980  18783980     1      *      1  18783980   rs74056619
895      chr1  18784033  18784033     1      *      1  18784033   rs74056620
896      chr1  18784068  18784068     1      *      1  18784068   rs74056621
897      chr1  18784160  18784160     1      *      1  18784160   rs74056622
898      chr4 114106683 114106683     1      *      4 114106683  rs115982993
899     chr11 118548722 118548722     1      *     11 118548722  rs111657631
900      chr3 189563329 189563329     1      *      3 189563329  rs189566544
901     chr11 121940094 121940094     1      *     11 121940094  rs143694932
902     chr12  89967845  89967845     1      *     12  89967845  rs138517179
903     chr20  59333413  59333413     1      *     20  59333413  rs138005219
904      chr6  15880941  15880941     1      *      6  15880941  rs116116894
905     chr12  84365999  84365999     1      *     12  84365999  rs146219909
906      chr2   4101751   4101751     1      *      2   4101751  rs112901026
907     chr22  49158345  49158345     1      *     22  49158345    rs6009185
908      chr5  31695670  31695670     1      *      5  31695670     rs372344
909      chr7 101886632 101886632     1      *      7 101886632   rs10234809
910      chr7 123038013 123038013     1      *      7 123038013  rs111681691
911     chr12  18903336  18903336     1      *     12  18903336    rs8181669
912     chr12  18903960  18903960     1      *     12  18903960    rs1490716
913     chr16  76851168  76851168     1      *     16  76851168   rs34141129
914     chr10  11818334  11818334     1      *     10  11818334   rs58829444
915     chr16  13889638  13889638     1      *     16  13889638   rs13338660
916     chr16  13894865  13894865     1      *     16  13894865    rs9924452
917     chr16  13894782  13894782     1      *     16  13894782    rs7184192
918      chr1  62981186  62981186     1      *      1  62981186   rs72671743
919     chr21  27242552  27242552     1      *     21  27242552    rs1477717
920     chr16  13892870  13892870     1      *     16  13892870    rs1364363
921      chr5  31694898  31694898     1      *      5  31694898    rs1678921
922     chr16  13891137  13891137     1      *     16  13891137   rs10163219
923     chr16  13892198  13892198     1      *     16  13892198    rs9927170
924      chr3 196256232 196256232     1      *      3 196256232   rs56107869
925      chr3 196256235 196256235     1      *      3 196256235   rs56297497
926      chr8  95439207  95439207     1      *      8  95439207   rs74864598
927      chr8  95439600  95439600     1      *      8  95439600   rs16917667
928     chr19  32103916  32103916     1      *     19  32103916    rs8105292
929      chr1 184396836 184396836     1      *      1 184396836   rs61823501
930     chr10  59510886  59510886     1      *     10  59510886   rs11006544
931     chr12  99694540  99694540     1      *     12  99694540   rs11110004
932      chr4  38234363  38234363     1      *      4  38234363   rs78829380
933     chr12  75900959  75900959     1      *     12  75900959  rs149765481
934      chr6  22177692  22177692     1      *      6  22177692  rs182178320
935      chr7  47398239  47398239     1      *      7  47398239  rs192154334
936     chr19  32137461  32137461     1      *     19  32137461  rs115709306
937     chr19  32143298  32143298     1      *     19  32143298   rs78705027
938     chr19  32152628  32152628     1      *     19  32152628  rs116175387
939      chr2 172769257 172769257     1      *      2 172769257  rs115472750
940     chr16  87973047  87973047     1      *     16  87973047  rs116213227
941     chr18  79553190  79553190     1      *     18  79553190  rs188748322
942     chr16  87967762  87967762     1      *     16  87967762  rs114700275
943     chr16  87971983  87971983     1      *     16  87971983  rs114908471
944      chr5 141806037 141806037     1      *      5 141806037   rs17097649
945      chr5 141809067 141809067     1      *      5 141809067   rs17097676
946      chr5 101495996 101495996     1      *      5 101495996  rs113510721
947      chr5 101496433 101496433     1      *      5 101496433   rs28806579
948      chr1 165408366 165408366     1      *      1 165408366  rs116521297
949      chr1 165408879 165408879     1      *      1 165408879   rs78093250
950     chr16  87949887  87949887     1      *     16  87949887  rs138575291
951      chr5 166127270 166127270     1      *      5 166127270   rs74956835
952     chr13 113804866 113804866     1      *     13 113804866   rs77095672
953     chr13 113804983 113804983     1      *     13 113804983   rs56032548
954     chr16    720886    720886     1      *     16    720886   rs76064792
955      chr4  22625658  22625658     1      *      4  22625658  rs112577387
956      chr4  22630338  22630338     1      *      4  22630338   rs73123536
957     chr14  24328255  24328255     1      *     14  24328255    rs2092866
958     chr21  14119015  14119015     1      *     21  14119015   rs57346421
959     chr21  14120037  14120037     1      *     21  14120037   rs55798126
960     chr21  14124936  14124936     1      *     21  14124936   rs56337324
961     chr21  14126271  14126271     1      *     21  14126271   rs78528733
962     chr21  14131214  14131214     1      *     21  14131214   rs73894141
963     chr21  14131694  14131694     1      *     21  14131694   rs73894142
964     chr22  46422493  46422493     1      *     22  46422493  rs535263906
965      chr6  14453908  14453908     1      *      6  14453908  rs149447933
966      chr5  30425422  30425422     1      *      5  30425422  rs541284506
967      chr5  33083283  33083283     1      *      5  33083283  rs112434206
968      chr5 166089843 166089843     1      *      5 166089843  rs114821210
969      chr1  18784584  18784584     1      *      1  18784584   rs74056623
970     chr16  24584678  24584678     1      *     16  24584678  rs148133894
971      chr3 134436825 134436825     1      *      3 134436825  rs189919070
972      chr1  18790006  18790006     1      *      1  18790006   rs74056624
973     chr16  87925065  87925065     1      *     16  87925065  rs149322277
974      chr1  18783262  18783262     1      *      1  18783262  rs188344082
975     chr22  46423108  46423108     1      *     22  46423108  rs150381023
976     chr22  46429532  46429532     1      *     22  46429532  rs150109621
977      chr6  14411553  14411553     1      *      6  14411553  rs139130723
978      chr6  14420151  14420151     1      *      6  14420151  rs142803096
979     chr18  48509413  48509413     1      *     18  48509413  rs144303414
980      chr1 236396997 236396997     1      *      1 236396997   rs78133413
981      chr1 224153647 224153647     1      *      1 224153647  rs113737900
982      chr5  30869242  30869242     1      *      5  30869242   rs77506079
983     chr12  62675917  62675917     1      *     12  62675917   rs76392993
984      chr6 129963201 129963201     1      *      6 129963201   rs17757727
985     chr21  42637597  42637597     1      *     21  42637597  rs139489372
986      chr5 121264302 121264302     1      *      5 121264302   rs79031501
987      chr5 121265711 121265711     1      *      5 121265711     rs965460
988      chr5 121270537 121270537     1      *      5 121270537  rs114726259
989      chr7 104595243 104595243     1      *      7 104595243  rs143054558
990      chr8 108747025 108747025     1      *      8 108747025   rs62509389
991      chr8 108762441 108762441     1      *      8 108762441   rs62509394
992      chr7 104670969 104670969     1      *      7 104670969  rs190116644
993      chr7   4549001   4549001     1      *      7   4549001   rs11766034
994     chr16  13893862  13893862     1      *     16  13893862    rs6498482
995     chr16  50120769  50120769     1      *     16  50120769   rs79272715
996      chr8  95440624  95440624     1      *      8  95440624    rs1392797
997      chr8  95455121  95455121     1      *      8  95455121   rs78897914
998      chr8  95457559  95457559     1      *      8  95457559   rs16917715
999      chr8  95454820  95454820     1      *      8  95454820  rs116454494
1000    chr16  13895264  13895264     1      *     16  13895264    rs7188980
1001    chr16  78933297  78933297     1      *     16  78933297    rs7198756
1002     chr1 121213648 121213648     1      *      1 121213648  rs587606498
1003    chr22  27571691  27571691     1      *     22  27571691    rs5752592
1004    chr22  27568401  27568401     1      *     22  27568401   rs28580426
1005    chr12  75962050  75962050     1      *     12  75962050    rs7965830
1006    chr13  27021678  27021678     1      *     13  27021678   rs61945053
1007     chr7   6163445   6163445     1      *      7   6163445   rs78314028
1008    chr11  98834502  98834502     1      *     11  98834502   rs12362161
1009    chr14  31849939  31849939     1      *     14  31849939  rs113235453
1010     chr2  23527771  23527771     1      *      2  23527771    rs1709294
1011     chr5   8543925   8543925     1      *      5   8543925    rs1700575
1012     chr6  42088268  42088268     1      *      6  42088268   rs79661299
1013     chr8   3620814   3620814     1      *      8   3620814    rs1600857
1014    chr12 104992867 104992867     1      *     12 104992867    rs4331189
1015    chr12 104959466 104959466     1      *     12 104959466    rs4075503
1016     chr5   2655665   2655665     1      *      5   2655665   rs16870234
1017     chr5 103642776 103642776     1      *      5 103642776   rs75087282
1018    chr12 107654295 107654295     1      *     12 107654295   rs28548659
1019     chr4  11262289  11262289     1      *      4  11262289     rs782760
1020     chr3  32484661  32484661     1      *      3  32484661     rs367841
1021    chr20  52069476  52069476     1      *     20  52069476    rs6013374
1022    chr19  57376380  57376380     1      *     19  57376380  rs189508091
1023    chr12  29535269  29535269     1      *     12  29535269     rs299453
1024    chr12 104806310 104806310     1      *     12 104806310    rs9737956
1025     chr3 175704057 175704057     1      *      3 175704057    rs6773175
1026     chr3 109782466 109782466     1      *      3 109782466     rs664669
1027     chr8  21741725  21741725     1      *      8  21741725  rs112455636
1028    chr10  77684995  77684995     1      *     10  77684995    rs4979906
1029     chr3  32447042  32447042     1      *      3  32447042   rs12638540
1030    chr19  14240762  14240762     1      *     19  14240762    rs4528684
1031     chr4 175937875 175937875     1      *      4 175937875    rs7687921
1032    chr14  90213566  90213566     1      *     14  90213566    rs8017423
1033    chr12 131378358 131378358     1      *     12 131378358    rs7965445
1034    chr15  31537504  31537504     1      *     15  31537504    rs2125623
1035    chr11  12447850  12447850     1      *     11  12447850    rs7120489
1036     chr5  33636489  33636489     1      *      5  33636489    rs6868223
1037     chr1 221378197 221378197     1      *      1 221378197   rs12733856
1038     chr7 112446278 112446278     1      *      7 112446278   rs17159640
1039    chr19  19296909  19296909     1      *     19  19296909   rs10401969
1040    chr19  44919689  44919689     1      *     19  44919689    rs4420638
1041    chr19  44744370  44744370     1      *     19  44744370    rs4803750
1042     chr1 109275684 109275684     1      *      1 109275684     rs629301
1043     chr2  21065449  21065449     1      *      2  21065449     rs562338
1044     chr2  21176344  21176344     1      *      2  21176344     rs478442
1045     chr2  27263727  27263727     1      *      2  27263727    rs6759518
1046     chr2  27412596  27412596     1      *      2  27412596    rs1728918
1047     chr2  27518370  27518370     1      *      2  27518370     rs780094
1048     chr2 215086907 215086907     1      *      2 215086907     rs940274
1049     chr4 102363708 102363708     1      *      4 102363708   rs13114738
1050     chr4 110810780 110810780     1      *      4 110810780    rs6533530
1051     chr4 139829967 139829967     1      *      4 139829967    rs1869717
1052     chr5  75329662  75329662     1      *      5  75329662    rs7703051
1053     chr5  75463358  75463358     1      *      5  75463358    rs4704221
1054     chr5  75584065  75584065     1      *      5  75584065    rs5744680
1055     chr5  75701931  75701931     1      *      5  75701931   rs10057967
1056     chr7  73462836  73462836     1      *      7  73462836    rs2074755
1057     chr7  73637727  73637727     1      *      7  73637727     rs799165
1058    chr11  61803311  61803311     1      *     11  61803311     rs174547
1059    chr11 116778201 116778201     1      *     11 116778201     rs964184
1060    chr12  89656726  89656726     1      *     12  89656726   rs12579302
1061     chr8  20008763  20008763     1      *      8  20008763     rs765547
1062     chr8 125466108 125466108     1      *      8 125466108    rs2980853
1063     chr9  22125504  22125504     1      *      9  22125504    rs1333049
1064    chr20  41147406  41147406     1      *     20  41147406     rs760762
1065    chr20  41322165  41322165     1      *     20  41322165    rs2866611
1066    chr11 117037567 117037567     1      *     11 117037567    rs7115242
1067    chr12 122479003 122479003     1      *     12 122479003   rs12369179
1068    chr15  58435126  58435126     1      *     15  58435126     rs261332
1069    chr16  53786615  53786615     1      *     16  53786615    rs9939609
1070    chr16  56956804  56956804     1      *     16  56956804     rs247617
1071     chr1 109275216 109275216     1      *      1 109275216     rs660240
1072     chr4 110747470 110747470     1      *      4 110747470   rs17042102
1073     chr6  36679903  36679903     1      *      6  36679903    rs4135240
1074     chr6 160591981 160591981     1      *      6 160591981  rs140570886
1075     chr9  22100177  22100177     1      *      9  22100177    rs1556516
1076    chr12 111466567 111466567     1      *     12 111466567    rs4766578
1077     chr9  95006476  95006476     1      *      9  95006476  rs147288039
1078    chr16  72991194  72991194     1      *     16  72991194   rs61208973
1079     chr9  22124141  22124141     1      *      9  22124141    rs7857118
1080    chr16  53769311  53769311     1      *     16  53769311   rs62048402
1081     chr4 110780277 110780277     1      *      4 110780277   rs59788391
1082     chr5 110840429 110840429     1      *      5 110840429    rs9885413
     gwas
1      AF
2      AF
3      AF
4      AF
5      AF
6      AF
7      AF
8      AF
9      AF
10     AF
11     AF
12     AF
13     AF
14     AF
15     AF
16     AF
17     AF
18     AF
19     AF
20     AF
21     AF
22     AF
23     AF
24     AF
25     AF
26     AF
27     AF
28     AF
29     AF
30     AF
31     AF
32     AF
33     AF
34     AF
35     AF
36     AF
37     AF
38     AF
39     AF
40     AF
41     AF
42     AF
43     AF
44     AF
45     AF
46     AF
47     AF
48     AF
49     AF
50     AF
51     AF
52     AF
53     AF
54     AF
55     AF
56     AF
57     AF
58     AF
59     AF
60     AF
61     AF
62     AF
63     AF
64     AF
65     AF
66     AF
67     AF
68     AF
69     AF
70     AF
71     AF
72     AF
73     AF
74     AF
75     AF
76     AF
77     AF
78     AF
79     AF
80     AF
81     AF
82     AF
83     AF
84     AF
85     AF
86     AF
87     AF
88     AF
89     AF
90     AF
91     AF
92     AF
93     AF
94     AF
95     AF
96     AF
97     AF
98     AF
99     AF
100    AF
101    AF
102    AF
103    AF
104    AF
105    AF
106    AF
107    AF
108    AF
109    AF
110    AF
111    AF
112    AF
113    AF
114    AF
115    AF
116    AF
117    AF
118    AF
119    AF
120    AF
121    AF
122    AF
123    AF
124    AF
125    AF
126    AF
127    AF
128    AF
129    AF
130    AF
131    AF
132    AF
133    AF
134    AF
135    AF
136    AF
137    AF
138    AF
139    AF
140    AF
141    AF
142    AF
143    AF
144    AF
145    AF
146    AF
147    AF
148    AF
149    AF
150    AF
151    AF
152    AF
153    AF
154    AF
155    AF
156    AF
157    AF
158    AF
159    AF
160    AF
161    AF
162    AF
163    AF
164    AF
165    AF
166    AF
167    AF
168    AF
169    AF
170    AF
171    AF
172    AF
173    AF
174    AF
175    AF
176    AF
177    AF
178    AF
179    AF
180    AF
181    AF
182    AF
183    AF
184    AF
185    AF
186    AF
187    AF
188    AF
189    AF
190    AF
191    AF
192    AF
193    AF
194    AF
195    AF
196    AF
197    AF
198    AF
199    AF
200    AF
201    AF
202    AF
203    AF
204    AF
205    AF
206    AF
207    AF
208    AF
209    AF
210    AF
211    AF
212    AF
213    AF
214    AF
215    AF
216    AF
217    AF
218    AF
219    AF
220    AF
221    AF
222    AF
223    AF
224    AF
225    AF
226    AF
227    AF
228    AF
229    AF
230    AF
231    AF
232    AF
233    AF
234    AF
235    AF
236    AF
237    AF
238    AF
239    AF
240    AF
241    AF
242    AF
243    AF
244    AF
245    AF
246    AF
247    AF
248    AF
249    AF
250    AF
251    AF
252    AF
253    AF
254    AF
255    AF
256    AF
257    AF
258    AF
259    AF
260    AF
261    AF
262    AF
263    AF
264    AF
265    AF
266    AF
267    AF
268    AF
269    AF
270    AF
271    AF
272    AF
273    AF
274    AF
275    AF
276    AF
277    AF
278    AF
279    AF
280    AF
281    AF
282    AF
283    AF
284    AF
285    AF
286    AF
287    AF
288    AF
289    AF
290    AF
291    AF
292    AF
293    AF
294    AF
295    AF
296    AF
297    AF
298    AF
299    AF
300    AF
301    AF
302    AF
303    AF
304    AF
305    AF
306    AF
307    AF
308    AF
309    AF
310    AF
311    AF
312    AF
313    AF
314    AF
315    AF
316    AF
317    AF
318    AF
319    AF
320    AF
321    AF
322    AF
323    AF
324    AF
325    AF
326    AF
327    AF
328    AF
329    AF
330    AF
331    AF
332    AF
333    AF
334    AF
335    AF
336    AF
337    AF
338    AF
339    AF
340    AF
341    AF
342    AF
343    AF
344    AF
345    AF
346    AF
347    AF
348    AF
349    AF
350    AF
351    AF
352    AF
353    AF
354    AF
355    AF
356    AF
357    AF
358    AF
359    AF
360    AF
361    AF
362    AF
363    AF
364    AF
365    AF
366    AF
367    AF
368    AF
369    AF
370    AF
371    AF
372    AF
373    AF
374    AF
375    AF
376    AF
377    AF
378    AF
379    AF
380    AF
381    AF
382    AF
383    AF
384    AF
385    AF
386    AF
387    AF
388    AF
389    AF
390    AF
391    AF
392    AF
393    AF
394    AF
395    AF
396    AF
397    AF
398    AF
399    AF
400    AF
401    AF
402    AF
403    AF
404    AF
405    AF
406    AF
407    AF
408    AF
409    AF
410    AF
411    AF
412    AF
413    AF
414    AF
415    AF
416    AF
417    AF
418    AF
419    AF
420    AF
421    AF
422    AF
423    AF
424    AF
425    AF
426    AF
427    AF
428    AF
429    AF
430    AF
431    AF
432    AF
433    AF
434    AF
435    AF
436    AF
437    AF
438    AF
439    AF
440    AF
441    AF
442    AF
443    AF
444    AF
445    AF
446    AF
447    AF
448    AF
449    AF
450    AF
451    AF
452    AF
453    AF
454    AF
455    AF
456    AF
457    AF
458    AF
459    AF
460    AF
461    AF
462    AF
463    AF
464    AF
465    AF
466    AF
467    AF
468    AF
469    AF
470    AF
471    AF
472    AF
473    AF
474    AF
475    AF
476    AF
477    AF
478    AF
479    AF
480    AF
481    AF
482    AF
483    AF
484    AF
485    AF
486    AF
487    AF
488    AF
489    AF
490    AF
491    AF
492    AF
493    AF
494    AF
495    AF
496    AF
497    AF
498    AF
499    AF
500    AF
501    AF
502    AF
503    AF
504    AF
505    AF
506    AF
507    AF
508    AF
509    AF
510    AF
511    AF
512    AF
513    AF
514    AF
515    AF
516    AF
517    AF
518    AF
519    AF
520    AF
521    AF
522    AF
523    AF
524    AF
525    AF
526    AF
527    AF
528    AF
529    AF
530    AF
531    AF
532    AF
533    AF
534    AF
535    AF
536    AF
537    AF
538    AF
539    AF
540    AF
541    AF
542    AF
543    AF
544    AF
545    AF
546    AF
547    AF
548    AF
549    AF
550    AF
551    AF
552    AF
553    AF
554    AF
555    AF
556    AF
557    AF
558    AF
559    AF
560    AF
561    AF
562    AF
563    AF
564    AF
565    AF
566    AF
567    AF
568    AF
569    AF
570    AF
571    AF
572    AF
573    AF
574    AF
575    AF
576    AF
577    AF
578    AF
579    AF
580    AF
581    AF
582    AF
583    AF
584    AF
585    AF
586    AF
587    AF
588    AF
589    AF
590    AF
591    AF
592    AF
593    AF
594    AF
595    AF
596    AF
597    AF
598    AF
599    AF
600    AF
601    AF
602    AF
603    AF
604    AF
605    AF
606    AF
607    AF
608    AF
609    AF
610    AF
611    AF
612    AF
613    AF
614    AF
615    AF
616    AF
617    AF
618    AF
619    AF
620    AF
621    AF
622    AF
623    AF
624    AF
625    AF
626    AF
627    AF
628    AF
629    AF
630    AF
631    AF
632    AF
633    AF
634    AF
635    AF
636    AF
637    AF
638    AF
639    AF
640    AF
641    AF
642    AF
643    AF
644    AF
645    AF
646    AF
647    AF
648    AF
649    AF
650    AF
651    AF
652    AF
653    AF
654    AF
655    AF
656    AF
657    AF
658    AF
659    AF
660    AF
661    AF
662    AF
663    AF
664    AF
665    AF
666    AF
667    AF
668    AF
669    AF
670    AF
671    AF
672    AF
673    AF
674    AF
675    AF
676    AF
677    AF
678    AF
679    AF
680    HF
681    HF
682    HF
683    HF
684    HF
685    HF
686    HF
687    HF
688    HF
689    HF
690    HF
691    HF
692    HF
693    HF
694    HF
695    HF
696    HF
697    HF
698    HF
699    HF
700    HF
701    HF
702    HF
703    HF
704    HF
705    HF
706    HF
707    HF
708    HF
709    HF
710    HF
711    HF
712    HF
713    HF
714    HF
715    HF
716    HF
717    HF
718    HF
719    HF
720    HF
721    HF
722    HF
723    HF
724    HF
725    HF
726    HF
727    HF
728    HF
729    HF
730    HF
731    HF
732    HF
733    HF
734    HF
735    HF
736    HF
737    HF
738    HF
739    HF
740    HF
741    HF
742    HF
743    HF
744    HF
745    HF
746    HF
747    HF
748    HF
749    HF
750    HF
751    HF
752    HF
753    HF
754    HF
755    HF
756    HF
757    HF
758    HF
759    HF
760    HF
761    HF
762    HF
763    HF
764    HF
765    HF
766    HF
767    HF
768    HF
769    HF
770    HF
771    HF
772    HF
773    HF
774    HF
775    HF
776    HF
777    HF
778    HF
779    HF
780    HF
781    HF
782    HF
783    HF
784    HF
785    HF
786    HF
787    HF
788    HF
789    HF
790    HF
791    HF
792    HF
793    HF
794    HF
795    HF
796    HF
797    HF
798    HF
799    HF
800    HF
801    HF
802    HF
803    HF
804    HF
805    HF
806    HF
807    HF
808    HF
809    HF
810    HF
811    HF
812    HF
813    HF
814    HF
815    HF
816    HF
817    HF
818    HF
819    HF
820    HF
821    HF
822    HF
823    HF
824    HF
825    HF
826    HF
827    HF
828    HF
829    HF
830    HF
831    HF
832    HF
833    HF
834    HF
835    HF
836    HF
837    HF
838    HF
839    HF
840    HF
841    HF
842    HF
843    HF
844    HF
845    HF
846    HF
847    HF
848    HF
849    HF
850    HF
851    HF
852    HF
853    HF
854    HF
855    HF
856    HF
857    HF
858    HF
859    HF
860    HF
861    HF
862    HF
863    HF
864    HF
865    HF
866    HF
867    HF
868    HF
869    HF
870    HF
871    HF
872    HF
873    HF
874    HF
875    HF
876    HF
877    HF
878    HF
879    HF
880    HF
881    HF
882    HF
883    HF
884    HF
885    HF
886    HF
887    HF
888    HF
889    HF
890    HF
891    HF
892    HF
893    HF
894    HF
895    HF
896    HF
897    HF
898    HF
899    HF
900    HF
901    HF
902    HF
903    HF
904    HF
905    HF
906    HF
907    HF
908    HF
909    HF
910    HF
911    HF
912    HF
913    HF
914    HF
915    HF
916    HF
917    HF
918    HF
919    HF
920    HF
921    HF
922    HF
923    HF
924    HF
925    HF
926    HF
927    HF
928    HF
929    HF
930    HF
931    HF
932    HF
933    HF
934    HF
935    HF
936    HF
937    HF
938    HF
939    HF
940    HF
941    HF
942    HF
943    HF
944    HF
945    HF
946    HF
947    HF
948    HF
949    HF
950    HF
951    HF
952    HF
953    HF
954    HF
955    HF
956    HF
957    HF
958    HF
959    HF
960    HF
961    HF
962    HF
963    HF
964    HF
965    HF
966    HF
967    HF
968    HF
969    HF
970    HF
971    HF
972    HF
973    HF
974    HF
975    HF
976    HF
977    HF
978    HF
979    HF
980    HF
981    HF
982    HF
983    HF
984    HF
985    HF
986    HF
987    HF
988    HF
989    HF
990    HF
991    HF
992    HF
993    HF
994    HF
995    HF
996    HF
997    HF
998    HF
999    HF
1000   HF
1001   HF
1002   HF
1003   HF
1004   HF
1005   HF
1006   HF
1007   HF
1008   HF
1009   HF
1010   HF
1011   HF
1012   HF
1013   HF
1014   HF
1015   HF
1016   HF
1017   HF
1018   HF
1019   HF
1020   HF
1021   HF
1022   HF
1023   HF
1024   HF
1025   HF
1026   HF
1027   HF
1028   HF
1029   HF
1030   HF
1031   HF
1032   HF
1033   HF
1034   HF
1035   HF
1036   HF
1037   HF
1038   HF
1039   HF
1040   HF
1041   HF
1042   HF
1043   HF
1044   HF
1045   HF
1046   HF
1047   HF
1048   HF
1049   HF
1050   HF
1051   HF
1052   HF
1053   HF
1054   HF
1055   HF
1056   HF
1057   HF
1058   HF
1059   HF
1060   HF
1061   HF
1062   HF
1063   HF
1064   HF
1065   HF
1066   HF
1067   HF
1068   HF
1069   HF
1070   HF
1071   HF
1072   HF
1073   HF
1074   HF
1075   HF
1076   HF
1077   HF
1078   HF
1079   HF
1080   HF
1081   HF
1082   HF
 # rtracklayer::export.bed(Short_gwas_gr,"data/Final_four_data/ARR_HF_SNP_local.bed")
 # 
 
 Dox_prot <- readRDS("data/other_papers/Dox_proteome_paper.RDS")
proto_list <- Dox_prot %>% 
  group_by(SYMBOL,logFC) %>% 
  summarize(ENTREZID=paste(unique(ENTREZID),collapse=";"),
            Protein=paste(unique(Protein),collapse=";"))

Here I am doing the overlapping of the previous ranges of SNPs and the full ATAC peak set. I also later create the data frames from the reheat data, the reheat data using the p<0.005 top genes, the cluster names associated with each peak, and the list of TE/notTE associated with each peak.

ATAC_peaks_gr <- Collapsed_new_peaks %>% GRanges()

Peaks_cutoff <- read_delim("data/Final_four_data/LCPM_matrix_ff.txt",delim = "/") %>% dplyr::select(Peakid)
  


gwas_short_list <- gwas_peak_check %>% as.data.frame %>% dplyr::filter(Peakid %in%Peaks_cutoff$Peakid)

gwas_10k_list <- gwas_peak_check_10k %>% distinct(SNPS,Peakid)%>% dplyr::filter(Peakid %in%Peaks_cutoff$Peakid)

gwas_20k_list <- gwas_peak_check_20k %>% distinct(SNPS,Peakid)%>% dplyr::filter(Peakid %in%Peaks_cutoff$Peakid)

gwas_50k_list <- gwas_peak_check_50k %>% distinct(SNPS,Peakid)%>% dplyr::filter(Peakid %in%Peaks_cutoff$Peakid)

Reheat_data <- read_excel("data/other_papers/jah36123-sup-0002-tables2.xlsx")
top_reheat <- Reheat_data %>%
  dplyr::filter(fisher_pvalue<0.005)
Nine_te_df <- readRDS("data/Final_four_data/Nine_group_TE_df.RDS")
###needed to change TE status to at least 1 bp overlap
match <- Nine_te_df %>% 
   mutate(TEstatus=if_else(!is.na(per_ol),"TE_peak","not_TE_peak")) %>% 
  distinct(Peakid,TEstatus,mrc,.keep_all = TRUE) 

Peaks within 5kb +/- RNA TSS, gwas range +/- 10 kb

To break down what I am doing here: I start with the list of peaks that overlap a gwas SNP that has been expanded by 20kb. I then only add the RNA expressed genes associated with the peaks that are within +/- 5 kb of its TSS. I join the median LFC data frames for ATAC and RNA at 3 and 24 hours, the TEstatus, the reheat status and exclude any SNP-Peak combinations that do not have RNA assigned. (This effectively is filtering out peaks outside of the 10kb TSS range That would make the list drop from 2019 to 298 rows)

gwas_df <-gwas_20k_list%>% 
  as.data.frame() %>%
  left_join(., peak_10kb_neargenes, by=c("Peakid"="Peakid")) %>%
  left_join(., (ATAC_3_lfc %>%
                  dplyr::select(peak,med_3h_lfc)),by=c("Peakid"="peak")) %>% 
  left_join(., (ATAC_24_lfc %>%
                  dplyr::select(peak,med_24h_lfc)),by=c("Peakid"="peak"))%>% 
  left_join(., RNA_median_3_lfc,by =c("NCBI_gene"="ENTREZID", "SYMBOL"="SYMBOL")) %>%
  left_join(., RNA_median_24_lfc,by =c("NCBI_gene"="ENTREZID", "SYMBOL"="SYMBOL")) %>% 
  mutate(reheat=if_else(SYMBOL %in% Reheat_data$gene,"reheat_gene","not_reheat_gene")) %>% 
  distinct(SNPS,Peakid,.keep_all = TRUE) %>% 
  tidyr::unite(name,SNPS,SYMBOL,Peakid,sep ="_",remove=FALSE) %>% 
  left_join(.,(match %>% 
                 group_by(Peakid) %>%
                 filter(!(TEstatus=="not_TE_peak" & any (TEstatus == "TE_peak"))) %>% 
                 ungroup() %>%
                 distinct(TEstatus,Peakid,.keep_all = TRUE)),
            by = c("Peakid"="Peakid")) %>% 
  mutate(dist_to_SNP=case_when(Peakid %in% gwas_short_list$Peakid &SNPS %in% gwas_short_list$SNPS~ 0,
                               Peakid %in% gwas_10k_list$Peakid &SNPS %in% gwas_10k_list$SNPS~ 10,
    Peakid %in% gwas_20k_list$Peakid &SNPS %in% gwas_20k_list$SNPS~ 20,
     Peakid %in% gwas_50k_list$Peakid &SNPS %in% gwas_50k_list$SNPS ~ 50)) %>% 
  group_by(SNPS,Peakid) %>% 
  summarize(name=unique(name),
           med_3h_lfc=unique(med_3h_lfc),
           med_24h_lfc=unique(med_24h_lfc),
           RNA_3h_lfc=unique(RNA_3h_lfc),
           RNA_24h_lfc=unique(RNA_24h_lfc),
          repClass=paste(unique(repClass),collapse=":"),
           TEstatus=paste(unique(TEstatus),collapse=";"),
          SYMBOL=paste(unique(SYMBOL),collapse=";"),
           reheat=paste(unique(reheat),collapse=";"),
          mrc=unique(mrc),
          dist_to_SNP=min(dist_to_SNP)) %>% 
  na.omit(RNA_3h_lfc)

gwas_mat <- gwas_df %>% 
  ungroup() %>% 
  dplyr::select(name,med_3h_lfc:RNA_24h_lfc) %>% 
  column_to_rownames("name") %>% 
  as.matrix()
gwas_name_mat <- gwas_df %>% 
  ungroup() %>% 
  dplyr::select(name,TEstatus,mrc,reheat,dist_to_SNP)

row_anno <- ComplexHeatmap::rowAnnotation(TE_status=gwas_name_mat$TEstatus,reheat_status=gwas_name_mat$reheat,MRC=gwas_name_mat$mrc,direct_overlap=gwas_name_mat$dist_to_SNP,col= list(TE_status=c("TE_peak"="goldenrod",
                                "TE_peak;not_TE_peak"="goldenrod",
                                "not_TE_peak;TE_peak"="goldenrod",
                                "not_TE_peak"="lightblue"),                                                     MRC = c("EAR_open" = "#F8766D",                                                                    "EAR_close" = "#f6483c","ESR_open" = "#7CAE00",
                            "ESR_close" = "#587b00",
                            "ESR_opcl"="grey40",
                            "ESR_C"="grey40",
                            "ESR_clop"="tan",
                             "ESR_D"="tan",
                               "ESR_OC" = "#6a9500",
                                "LR_open" = "#00BFC4",
                              "LR_close" = "#008d91",
                              "NR" = "#C77CFF",
                                "not_mrc"="black"),
                    reheat_status=c("reheat_gene"="green","not_reheat_gene"="orange"),
                    direct_overlap=c("0"="red","10"="pink","20"="tan2","50"="grey8")))
mat2 <- gwas_mat  
# rownames(mat2)[1] = paste(c(letters, LETTERS), collapse = "")
simply_map <- ComplexHeatmap::Heatmap(gwas_mat,
                        left_annotation = row_anno,
                        show_row_names = TRUE,
                        # row_names_side = "left",
                        row_names_max_width= max_text_width(rownames(gwas_mat),                                                        gp=gpar(fontsize=8)),
                        heatmap_legend_param = list(direction = "horizontal"),
                        show_column_names = TRUE,
                        cluster_rows = FALSE,
                        cluster_columns = FALSE)

draw(simply_map, merge_legend = TRUE, heatmap_legend_side = "bottom", 
    annotation_legend_side = "bottom")

Version Author Date
5e56c1b E. Renee Matthews 2025-01-24
d09c7db E. Renee Matthews 2025-01-17

Peaks within 5kb +/- RNA TSS, gwas range +/- 25 kb

For comparison, I went ahead and did the same this as above, but used the +/- 25 kb expanded SNP range. This left me with 660 ATAC-SNP_RNA sets.

gwas_df <-
gwas_50k_list%>% 
  as.data.frame() %>%
  left_join(., peak_10kb_neargenes, by=c("Peakid"="Peakid")) %>%
  left_join(., (ATAC_3_lfc %>%
                  dplyr::select(peak,med_3h_lfc)),by=c("Peakid"="peak")) %>% 
  left_join(., (ATAC_24_lfc %>%
                  dplyr::select(peak,med_24h_lfc)),by=c("Peakid"="peak"))%>% 
  left_join(., RNA_median_3_lfc,by =c("NCBI_gene"="ENTREZID", "SYMBOL"="SYMBOL")) %>%
  left_join(., RNA_median_24_lfc,by =c("NCBI_gene"="ENTREZID", "SYMBOL"="SYMBOL")) %>% 
  mutate(reheat=if_else(SYMBOL %in% Reheat_data$gene,"reheat_gene","not_reheat_gene")) %>% 
  distinct(SNPS,Peakid,.keep_all = TRUE) %>% 
  tidyr::unite(name,SNPS,SYMBOL,Peakid,sep ="_",remove=FALSE) %>% 
  left_join(.,(match %>% 
                 group_by(Peakid) %>%
                 filter(!(TEstatus=="not_TE_peak" & any (TEstatus == "TE_peak"))) %>% 
                 ungroup() %>%
                 distinct(TEstatus,Peakid,.keep_all = TRUE)),
            by = c("Peakid"="Peakid")) %>% 
  mutate(dist_to_SNP=case_when(Peakid %in% gwas_short_list$Peakid &SNPS %in% gwas_short_list$SNPS~ 0,
                               Peakid %in% gwas_10k_list$Peakid &SNPS %in% gwas_10k_list$SNPS~ 10,
    Peakid %in% gwas_20k_list$Peakid &SNPS %in% gwas_20k_list$SNPS~ 20,
     Peakid %in% gwas_50k_list$Peakid &SNPS %in% gwas_50k_list$SNPS ~ 50)) %>% 
  group_by(SNPS,Peakid) %>% 
  # mutate(Keep=case_when(SNPS))
  # group_by(Peakid) %>% 
 summarize(name=unique(name),
           # SNPS=unique(SNPS),
           med_3h_lfc=unique(med_3h_lfc),
           med_24h_lfc=unique(med_24h_lfc),
           # AC_3h_lfc=unique(AC_3h_lfc),
           # AC_24h_lfc=unique(AC_24h_lfc),
           RNA_3h_lfc=unique(RNA_3h_lfc),
           RNA_24h_lfc=unique(RNA_24h_lfc),
          repClass=paste(unique(repClass),collapse=":"),
           TEstatus=paste(unique(TEstatus),collapse=";"),
          SYMBOL=paste(unique(SYMBOL),collapse=";"),
           reheat=paste(unique(reheat),collapse=";"),
          mrc=unique(mrc),
          dist_to_SNP=min(dist_to_SNP))  %>% 
  na.omit(RNA_3h_lfc)

gwas_mat <- gwas_df %>% 
  ungroup() %>% 
  dplyr::select(name,med_3h_lfc:RNA_24h_lfc) %>% 
  column_to_rownames("name") %>% 
  as.matrix()
gwas_name_mat <- gwas_df %>% 
  ungroup() %>% 
  dplyr::select(name,TEstatus,mrc,reheat,dist_to_SNP)

row_anno <- ComplexHeatmap::rowAnnotation(TE_status=gwas_name_mat$TEstatus,reheat_status=gwas_name_mat$reheat,MRC=gwas_name_mat$mrc,direct_overlap=gwas_name_mat$dist_to_SNP,col= list(TE_status=c("TE_peak"="goldenrod",
                                "TE_peak;not_TE_peak"="goldenrod",
                                "not_TE_peak;TE_peak"="goldenrod",
                                "not_TE_peak"="lightblue"),                                                     MRC = c("EAR_open" = "#F8766D",                                                                    "EAR_close" = "#f6483c","ESR_open" = "#7CAE00",
                            "ESR_close" = "#587b00",
                            "ESR_opcl"="grey40",
                            "ESR_C"="grey40",
                            "ESR_clop"="tan",
                             "ESR_D"="tan",
                               "ESR_OC" = "#6a9500",
                                "LR_open" = "#00BFC4",
                              "LR_close" = "#008d91",
                              "NR" = "#C77CFF",
                                "not_mrc"="black"),
                    reheat_status=c("reheat_gene"="green","not_reheat_gene"="orange"),
                    direct_overlap=c("0"="red","10"="pink","20"="tan2","50"="grey8")))
mat2 <- gwas_mat  
# rownames(mat2)[1] = paste(c(letters, LETTERS), collapse = "")
simply_map <- ComplexHeatmap::Heatmap(gwas_mat,
                        left_annotation = row_anno,
                        show_row_names = TRUE,
                        # row_names_side = "left",
                        row_names_max_width= max_text_width(rownames(gwas_mat),                                                        gp=gpar(fontsize=8)),
                        heatmap_legend_param = list(direction = "horizontal"),
                        show_column_names = TRUE,
                        cluster_rows = FALSE,
                        cluster_columns = FALSE)

draw(simply_map, merge_legend = TRUE, heatmap_legend_side = "bottom", 
    annotation_legend_side = "bottom")

Version Author Date
5e56c1b E. Renee Matthews 2025-01-24
ae1542c E. Renee Matthews 2025-01-17
d09c7db E. Renee Matthews 2025-01-17

Peaks within +/-20 kb RNA TSS ,gwas range +/- 10 kb

warning, 702 rows below

gwas_df <-
gwas_20k_list%>% 
  as.data.frame() %>%
  left_join(., peak_40kb_neargenes, by=c("Peakid"="Peakid")) %>%
  left_join(., (ATAC_3_lfc %>%
                  dplyr::select(peak,med_3h_lfc)),by=c("Peakid"="peak")) %>% 
  left_join(., (ATAC_24_lfc %>%
                  dplyr::select(peak,med_24h_lfc)),by=c("Peakid"="peak"))%>% 
  left_join(., RNA_median_3_lfc,by =c("NCBI_gene"="ENTREZID", "SYMBOL"="SYMBOL")) %>%
  left_join(., RNA_median_24_lfc,by =c("NCBI_gene"="ENTREZID", "SYMBOL"="SYMBOL")) %>% 
  mutate(reheat=if_else(SYMBOL %in% Reheat_data$gene,"reheat_gene","not_reheat_gene")) %>% 
  distinct(SNPS,Peakid,.keep_all = TRUE) %>% 
  tidyr::unite(name,SNPS,SYMBOL,Peakid,sep ="_",remove=FALSE) %>% 
  left_join(.,(match %>% 
                 group_by(Peakid) %>%
                 filter(!(TEstatus=="not_TE_peak" & any (TEstatus == "TE_peak"))) %>% 
                 ungroup() %>%
                 distinct(TEstatus,Peakid,.keep_all = TRUE)),
            by = c("Peakid"="Peakid")) %>% 
  mutate(dist_to_SNP=case_when(Peakid %in% gwas_short_list$Peakid &SNPS %in% gwas_short_list$SNPS~ 0,
                               Peakid %in% gwas_10k_list$Peakid &SNPS %in% gwas_10k_list$SNPS~ 10,
    Peakid %in% gwas_20k_list$Peakid &SNPS %in% gwas_20k_list$SNPS~ 20,
     Peakid %in% gwas_50k_list$Peakid &SNPS %in% gwas_50k_list$SNPS ~ 50)) %>% 
  group_by(SNPS,Peakid) %>% 
  arrange(., Peakid) %>% 
  # mutate(Keep=case_when(SNPS))
  # group_by(Peakid) %>% 
 summarize(name=unique(name),
           # SNPS=unique(SNPS),
           med_3h_lfc=unique(med_3h_lfc),
           med_24h_lfc=unique(med_24h_lfc),
           # AC_3h_lfc=unique(AC_3h_lfc),
           # AC_24h_lfc=unique(AC_24h_lfc),
           RNA_3h_lfc=unique(RNA_3h_lfc),
           RNA_24h_lfc=unique(RNA_24h_lfc),
          repClass=paste(unique(repClass),collapse=":"),
           TEstatus=paste(unique(TEstatus),collapse=";"),
          SYMBOL=paste(unique(SYMBOL),collapse=";"),
           reheat=paste(unique(reheat),collapse=";"),
          mrc=unique(mrc),
          dist_to_SNP=min(dist_to_SNP))  %>% 
  na.omit(RNA_3h_lfc)

gwas_mat <- gwas_df %>% 
  ungroup() %>% 
  dplyr::select(name,med_3h_lfc:RNA_24h_lfc) %>% 
  column_to_rownames("name") %>% 
  as.matrix()
gwas_name_mat <- gwas_df %>% 
  ungroup() %>% 
  dplyr::select(name,TEstatus,mrc,reheat,dist_to_SNP)

row_anno <- ComplexHeatmap::rowAnnotation(TE_status=gwas_name_mat$TEstatus,reheat_status=gwas_name_mat$reheat,MRC=gwas_name_mat$mrc,direct_overlap=gwas_name_mat$dist_to_SNP,col= list(TE_status=c("TE_peak"="goldenrod",
                                "TE_peak;not_TE_peak"="goldenrod",
                                "not_TE_peak;TE_peak"="goldenrod",
                                "not_TE_peak"="lightblue"),                                                     MRC = c("EAR_open" = "#F8766D",                                                                    "EAR_close" = "#f6483c","ESR_open" = "#7CAE00",
                            "ESR_close" = "#587b00",
                            "ESR_opcl"="grey40",
                            "ESR_C"="grey40",
                            "ESR_clop"="tan",
                             "ESR_D"="tan",
                               "ESR_OC" = "#6a9500",
                                "LR_open" = "#00BFC4",
                              "LR_close" = "#008d91",
                              "NR" = "#C77CFF",
                                "not_mrc"="black"),
                    reheat_status=c("reheat_gene"="green","not_reheat_gene"="orange"),
                    direct_overlap=c("0"="red","10"="pink","20"="tan2","50"="grey8")))
mat2 <- gwas_mat  
# rownames(mat2)[1] = paste(c(letters, LETTERS), collapse = "")
simply_map <- ComplexHeatmap::Heatmap(gwas_mat,
                        left_annotation = row_anno,
                        show_row_names = TRUE,
                        # row_names_side = "left",
                        row_names_max_width= max_text_width(rownames(gwas_mat),                                                        gp=gpar(fontsize=8)),
                        heatmap_legend_param = list(direction = "horizontal"),
                        show_column_names = TRUE,
                        cluster_rows = FALSE,
                        cluster_columns = FALSE)

draw(simply_map, merge_legend = TRUE, heatmap_legend_side = "bottom", 
    annotation_legend_side = "bottom")

Version Author Date
5e56c1b E. Renee Matthews 2025-01-24
ae1542c E. Renee Matthews 2025-01-17
d09c7db E. Renee Matthews 2025-01-17

gwas short list only

To make life really easy, or the smallest set that was readable, I used only the peaks that were directly overlapping a SNP, but filtered out peaks that were more than +/- 5 kb from an expressed RNA TSS. This gave me 33 ATAC-SNP-RNA rows.

gwas_df_short <-gwas_short_list%>%
  as.data.frame() %>%
  left_join(., peak_10kb_neargenes, by=c("Peakid"="Peakid")) %>%
  left_join(., (ATAC_3_lfc %>%
                  dplyr::select(peak,med_3h_lfc)),by=c("Peakid"="peak")) %>% 
  left_join(., (ATAC_24_lfc %>%
                  dplyr::select(peak,med_24h_lfc)),by=c("Peakid"="peak"))%>% 
  left_join(., RNA_median_3_lfc,by =c("NCBI_gene"="ENTREZID", "SYMBOL"="SYMBOL")) %>%
  left_join(., RNA_median_24_lfc,by =c("NCBI_gene"="ENTREZID", "SYMBOL"="SYMBOL")) %>% 
  na.omit(RNA_median_24_lfc) %>% 
  mutate(reheat=if_else(SYMBOL %in% Reheat_data$gene,"reheat_gene","not_reheat_gene")) %>% 
  distinct(SNPS,Peakid,.keep_all = TRUE) %>% 
  tidyr::unite(name,SNPS,SYMBOL,Peakid,sep ="_",remove=FALSE) %>% 
  left_join(.,(match %>% 
                 group_by(Peakid) %>%
                 filter(!(TEstatus=="not_TE_peak" & any (TEstatus == "TE_peak"))) %>% 
                 ungroup() %>%
                 distinct(TEstatus,Peakid,.keep_all = TRUE)),
            by = c("Peakid"="Peakid")) %>% 
  mutate(dist_to_SNP=case_when(Peakid %in% gwas_short_list$Peakid &SNPS %in% gwas_short_list$SNPS~ 0,
                               Peakid %in% gwas_10k_list$Peakid &SNPS %in% gwas_10k_list$SNPS~ 10,
    Peakid %in% gwas_20k_list$Peakid &SNPS %in% gwas_20k_list$SNPS~ 20,
     Peakid %in% gwas_50k_list$Peakid &SNPS %in% gwas_50k_list$SNPS ~ 50)) %>% 
  group_by(SNPS,Peakid) %>% 
  
  # mutate(Keep=case_when(SNPS))
  # group_by(Peakid) %>% 
 summarize(name=unique(name),
           # SNPS=unique(SNPS),
           med_3h_lfc=unique(med_3h_lfc),
           med_24h_lfc=unique(med_24h_lfc),
           # AC_3h_lfc=unique(AC_3h_lfc),
           # AC_24h_lfc=unique(AC_24h_lfc),
           RNA_3h_lfc=unique(RNA_3h_lfc),
           RNA_24h_lfc=unique(RNA_24h_lfc),
          repClass=paste(unique(repClass),collapse=":"),
           TEstatus=paste(unique(TEstatus),collapse=";"),
          SYMBOL=paste(unique(SYMBOL),collapse=";"),
           reheat=paste(unique(reheat),collapse=";"),
          mrc=unique(mrc),
          dist_to_SNP=min(dist_to_SNP)) %>% 
   arrange(., Peakid)%>% 
  left_join(., proto_list, by=c("SYMBOL"="SYMBOL"))
 
gwas_mat_short <- gwas_df_short %>% 
  ungroup() %>% 
  dplyr::select(name,med_3h_lfc:RNA_24h_lfc,logFC) %>% 
  column_to_rownames("name") %>% 
  as.matrix()
gwas_name_mat_short <- gwas_df_short %>% 
  ungroup() %>% 
  dplyr::select(name,TEstatus,mrc,reheat,dist_to_SNP)

row_anno_short <- ComplexHeatmap::rowAnnotation(TE_status=gwas_name_mat_short$TEstatus,reheat_status=gwas_name_mat_short$reheat,MRC=gwas_name_mat_short$mrc,direct_overlap=gwas_name_mat_short$dist_to_SNP,col= list(TE_status=c("TE_peak"="goldenrod",
                                "TE_peak;not_TE_peak"="goldenrod",
                                "not_TE_peak;TE_peak"="goldenrod",
                                "not_TE_peak"="lightblue"),                                                     MRC = c("EAR_open" = "#F8766D",                                                                    "EAR_close" = "#f6483c","ESR_open" = "#7CAE00",
                            "ESR_close" = "#587b00",
                            "ESR_opcl"="grey40",
                            "ESR_C"="grey40",
                            "ESR_clop"="tan",
                             "ESR_D"="tan",
                               "ESR_OC" = "#6a9500",
                                "LR_open" = "#00BFC4",
                              "LR_close" = "#008d91",
                              "NR" = "#C77CFF",
                                "not_mrc"="black"),
                    reheat_status=c("reheat_gene"="green","not_reheat_gene"="orange"),
                    direct_overlap=c("0"="red","10"="pink","20"="tan2","50"="grey8")))
mat2_short <- gwas_mat_short  
# rownames(mat2)[1] = paste(c(letters, LETTERS), collapse = "")
simply_map_short <- ComplexHeatmap::Heatmap(gwas_mat_short,
                        left_annotation = row_anno_short,
                        # show_row_names = TRUE,
                        # width = 10,
                        # row_names_side = "left",
                        row_names_max_width= max_text_width(rownames(gwas_mat_short),                                                        gp=gpar(fontsize=16)),
                        heatmap_legend_param = list(direction = "horizontal"),
                        show_column_names = TRUE,
                        cluster_rows = FALSE,
                        cluster_columns = FALSE)

draw(simply_map_short, merge_legend = TRUE, heatmap_legend_side = "bottom", 
    annotation_legend_side = "bottom")

Version Author Date
5e56c1b E. Renee Matthews 2025-01-24

mapping genes of interest:

drug_pal <- c("#8B006D","#DF707E","#F1B72B", "#3386DD","#707031","#41B333")
# K27_counts <-  readRDS("data/Final_four_data/All_Raodahpeaks.RDS")
ATAC_counts <- readRDS("data/Final_four_data/x4_filtered.RDS")
RNA_counts <- readRDS("data/other_papers/cpmcount.RDS") %>%
  dplyr::rename_with(.,~gsub(pattern="Da",replacement="DNR",.)) %>% 
 dplyr::rename_with(.,~gsub(pattern="Do",replacement="DOX",.)) %>% 
  dplyr::rename_with(.,~gsub(pattern="Ep",replacement="EPI",.)) %>% 
   dplyr::rename_with(.,~gsub(pattern="Mi",replacement="MTX",.)) %>% 
    dplyr::rename_with(.,~gsub(pattern="Tr",replacement="TRZ",.)) %>% 
       dplyr::rename_with(.,~gsub(pattern="Ve",replacement="VEH",.)) %>% 
  rownames_to_column("ENTREZID")
df_gene <- data.frame(SYMBOL=c("PSRC1","CDKN1A","CELSR2"))
df_gene <- df_gene %>% 
left_join(., (RNA_median_24_lfc %>% dplyr::select(ENTREZID,SYMBOL)), by = c ("SYMBOL"="SYMBOL")) %>% 
  left_join(., (gwas_df_short %>% dplyr::select(SNPS,Peakid,mrc,SYMBOL)),by = c("SYMBOL"="SYMBOL")) 

        
RNA_counts %>% 
  dplyr::filter(ENTREZID %in% df_gene$ENTREZID) %>% 
  pivot_longer(cols = !ENTREZID, names_to = "sample", values_to = "counts") %>% 
  left_join(., df_gene, by =c("ENTREZID"="ENTREZID")) %>% 
  separate("sample", into = c("trt","ind","time")) %>% 
  mutate(time=factor(time, levels = c("3h","24h"))) %>% 
  mutate(trt=factor(trt, levels= c("DOX","EPI","DNR","MTX","TRZ","VEH"))) %>% 
  ggplot(., aes (x = time, y=counts))+
  geom_boxplot(aes(fill=trt))+
  facet_wrap(~SYMBOL+Peakid, scales="free_y")+
  ggtitle("RNA LFC of expressed gene")+
    scale_fill_manual(values = drug_pal)+
  theme_bw()+
  ylab("log2 cpm RNA")

Version Author Date
5e56c1b E. Renee Matthews 2025-01-24
fb6aa7a E. Renee Matthews 2025-01-21
a505a0a E. Renee Matthews 2025-01-17
ATAC_counts %>% 
  cpm(., log = TRUE) %>% 
   as.data.frame() %>%
  rename_with(.,~gsub(pattern = "Ind1_75", replacement = "1_",.)) %>%
  rename_with(.,~gsub(pattern = "Ind2_87", replacement = "2_",.)) %>%
  rename_with(.,~gsub(pattern = "Ind3_77", replacement = "3_",.)) %>%
  rename_with(.,~gsub(pattern = "Ind6_71", replacement = "6_",.)) %>%
  rename_with(.,~gsub( "DX" ,'DOX',.)) %>%
  rename_with(.,~gsub( "DA" ,'DNR',.)) %>%
  rename_with(.,~gsub( "E" ,'EPI',.)) %>%
  rename_with(.,~gsub( "T" ,'TRZ',.)) %>%
  rename_with(.,~gsub( "M" ,'MTX',.)) %>%
  rename_with(.,~gsub( "V" ,'VEH',.)) %>%
  rename_with(.,~gsub("24h","_24h",.)) %>%
  rename_with(.,~gsub("3h","_3h",.)) %>% 
  dplyr::filter(row.names(.) %in% df_gene$Peakid) %>% 
  mutate(Peakid = row.names(.)) %>% 
  pivot_longer(cols = !Peakid, names_to = "sample", values_to = "counts") %>% 
  left_join(., df_gene, by =c("Peakid"="Peakid")) %>% 
  separate("sample", into = c("ind","trt","time")) %>% 
  mutate(time=factor(time, levels = c("3h","24h"))) %>% 
  mutate(trt=factor(trt, levels= c("DOX","EPI","DNR","MTX","TRZ","VEH"))) %>% 
  ggplot(., aes (x = time, y=counts))+
  geom_boxplot(aes(fill=trt))+
  facet_wrap(~Peakid+SYMBOL,scales="free_y")+
  ggtitle(" ATAC accessibility")+
  scale_fill_manual(values = drug_pal)+
  theme_bw()+
  ylab("log2 cpm ATAC")

Version Author Date
fb6aa7a E. Renee Matthews 2025-01-21
a505a0a E. Renee Matthews 2025-01-17
df_gene_next <- data.frame(SYMBOL=c("RAB44","DINOL"), ENTREZID=c("401258","108783646"))
df_gene_next <- df_gene_next %>% 
  left_join(., (gwas_df_short %>% dplyr::select(SNPS,Peakid,mrc,SYMBOL)),by = c("SYMBOL"="SYMBOL")) 


RNA_counts %>% 
  dplyr::filter(ENTREZID %in% df_gene_next$ENTREZID) %>% 
  pivot_longer(cols = !ENTREZID, names_to = "sample", values_to = "counts") %>% 
  # mutate(ENTREZID=as.numeric(ENTREZID)) %>% 
  left_join(., df_gene_next, by =c("ENTREZID"="ENTREZID")) %>% 
  separate("sample", into = c("trt","ind","time")) %>% 
  mutate(time=factor(time, levels = c("3h","24h"))) %>% 
  mutate(trt=factor(trt, levels= c("DOX","EPI","DNR","MTX","TRZ","VEH"))) %>% 
  ggplot(., aes (x = time, y=counts))+
  geom_boxplot(aes(fill=trt))+
  # facet_wrap(~SYMBOL+Peakid, scales="free_y")+
  ggtitle("RNA LFC of expressed gene")+
    scale_fill_manual(values = drug_pal)+
  theme_bw()+
  ylab("log2 cpm RNA")

Version Author Date
5e56c1b E. Renee Matthews 2025-01-24

Last figure attempt #2

count_df <- join_overlap_intersect(Collapsed_new_peaks_gr, Short_gwas_gr)

new_gwas_df <- count_df %>% 
  as.data.frame() %>% 
  left_join(., Nine_te_df, by=("Peakid"="Peakid")) %>% 
  left_join(.,(Collapsed_new_peaks %>% 
                 dplyr::select (Peakid, SYMBOL )),by = c ("Peakid"="Peakid")) %>% 
  dplyr::filter(mrc !="NR") %>%
  dplyr::filter(mrc !="not_mrc") %>%
  left_join(., (ATAC_3_lfc %>%
  dplyr::select(peak,med_3h_lfc)),by=c("Peakid"="peak")) %>% 
  left_join(., (ATAC_24_lfc %>%
  dplyr::select(peak,med_24h_lfc)),by=c("Peakid"="peak")) %>% 
  mutate(dist_to_SNP=0) %>% 
  group_by(Peakid, SNPS) %>% 
  summarize(med_3h_lfc=unique(med_3h_lfc),
           med_24h_lfc=unique(med_24h_lfc),
            SYMBOL=unique(SYMBOL),collapse=";",
           # AC_24h_lfc=unique(AC_24h_lfc),
           repClass=paste(unique(repClass),collapse=":"),
           TEstatus=paste(unique(TEstatus),collapse=";"),
            GWAS=paste(unique(gwas),collapse=";"),
           mrc=unique(mrc),
            dist_to_SNP=min(dist_to_SNP)) %>% 
  tidyr::unite(name,Peakid,SNPS,SYMBOL,sep ="_",remove=FALSE) %>% 
   arrange(., Peakid)


new_gwas_mat <- new_gwas_df%>% 
  ungroup() %>% 
  dplyr::select(name,med_3h_lfc, med_24h_lfc) %>% 
  column_to_rownames("name") %>% 
  as.matrix()
new_gwas_name_mat <- new_gwas_df %>% 
  ungroup() %>% 
  dplyr::select(name,TEstatus,mrc,GWAS,dist_to_SNP)

row_anno_gwas <-
  rowAnnotation(
    TE_status=new_gwas_name_mat$TEstatus,
    gwas_status=new_gwas_name_mat$GWAS,
    MRC=new_gwas_name_mat$mrc,
    direct_overlap=new_gwas_name_mat$dist_to_SNP,
    col= list(TE_status=c("TE_peak"="goldenrod",
                          "not_TE_peak"="lightblue"), 
              MRC = c("EAR_open" = "#F8766D",
                      "EAR_close" = "#f6483c",
                      "ESR_open" = "#7CAE00",
                      "ESR_close" = "#587b00",
                      "ESR_opcl"="grey40", 
                      "ESR_clop"="tan",
                      "LR_open" = "#00BFC4",
                      "LR_close" = "#008d91",
                      "NR" = "#C77CFF",
                      "not_mrc"="black"),
              gwas_status=c("AF"="green",
                            "HF"="orange", 
                            "AF;HF"="purple3"),
              direct_overlap=c("0"="red",
                               "10"="pink",
                               "20"="tan2",
                               "50"="grey8")))

simply_map_gwas <- ComplexHeatmap::Heatmap(new_gwas_mat,
                        left_annotation = row_anno_gwas,
                        row_names_max_width = max_text_width(rownames(new_gwas_mat),  
                                                             gp=gpar(fontsize=16)),
                        heatmap_legend_param = list(direction = "horizontal"),
                        show_column_names = TRUE,
                        cluster_rows = FALSE,
                        cluster_columns = FALSE)

draw(simply_map_gwas, merge_legend = TRUE, heatmap_legend_side = "bottom", 
    annotation_legend_side = "bottom")

Version Author Date
5e56c1b E. Renee Matthews 2025-01-24
# new_gwas_df %>% 
#   dplyr::filter(GWAS=="AF"|GWAS =="AF;HF") %>% 
#   distinct(Peakid)
#  
# #   distinct(Peakid) %>% 
# #   tally
# Short_gwas_gr %>%
#   as.data.frame() %>%
#   dplyr::filter(gwas=="AF") %>%
#   distinct(SNPS)
Knowles_respQTL <- readRDS("data/Knowles_5.RDS")
Knowles_alleQTL <- readRDS("data/Knowles_4.RDS")
# file <- read_parquet(choose.files())
Heart_Left_Ventricle_v10_eGenes <- readRDS("data/other_papers/Heart_Left_Ventricle_v10_eGenes_GTEx.RDS")
gwaslist <- new_gwas_df %>% distinct(SNPS) %>% ungroup()
Heart_Left_Ventricle_v10_eGenes %>% dplyr::filter (rs_id_dbSNP155_GRCh38p13 %in% gwaslist$SNPS)
# A tibble: 2 × 32
  gene_id          gene_name biotype gene_chr gene_start gene_end strand num_var
  <chr>            <chr>     <chr>   <chr>         <dbl>    <dbl> <chr>    <dbl>
1 ENSG00000108175… ZMIZ1     protei… chr10      79068966 79316519 +         8988
2 ENSG00000184207… PGP       protei… chr16       2211593  2214840 -         8210
# ℹ 24 more variables: beta_shape1 <dbl>, beta_shape2 <dbl>, true_df <dbl>,
#   pval_true_df <dbl>, variant_id <chr>, tss_distance <dbl>, chr <chr>,
#   variant_pos <dbl>, ref <chr>, alt <chr>, num_alt_per_site <dbl>,
#   rs_id_dbSNP155_GRCh38p13 <chr>, ma_samples <dbl>, ma_count <dbl>, af <dbl>,
#   pval_nominal <dbl>, slope <dbl>, slope_se <dbl>, pval_perm <dbl>,
#   pval_beta <dbl>, qval <dbl>, pval_nominal_threshold <dbl>, afc <dbl>,
#   afc_se <dbl>
gwaslist$gene <-c("-","PSRC1","PSRC1","CLCN6","-","PRRX1","PRRX1","-","-","-",
"FUT11;SYNPO2l-AS1","-","ENSG00000254851;ENSG00000280143","-","-","-","TMEM263-DT","-","-","BRICD5;PGP",
"-","-","-","-","CHRNB1","-","-","-","FKBP7","-",
"PLGLB1","-","KCNE1","-","-","-","SCN10A","GMPPB;WDR6;NCKIPSD;NICN1;RBM6;AMT;QRICH1;IHO1","WDR1","-",
"-","-","-","DNAJC18;SPATA24;PROB1;SLC23A1","-","CDKN1A","CAV2;ENSG00000279086","-","-")

gwaslist %>% 
  dplyr::filter(SNPS %in% Knowles_alleQTL$RSID)
# A tibble: 1 × 3
  Peakid                   SNPS       gene                         
  <chr>                    <chr>      <chr>                        
1 chr5.139426247.139426836 rs11242465 DNAJC18;SPATA24;PROB1;SLC23A1
Knowles_alleQTL %>% 
  dplyr::filter(RSID %in% gwaslist$SNPS)
# A tibble: 1 × 6
  gene            chr         pos RSID             p      q
  <chr>           <chr>     <dbl> <chr>        <dbl>  <dbl>
1 ENSG00000184584 chr5  139426616 rs11242465 0.00155 0.0381
# write.csv(gwaslist,"data/other_papers/GWAS_eQTL_genes.csv")

nakano, et al

nakano_SNPs <- readRDS("data/other_papers/nakano_SNPs_pull_VEF.RDS")

nakano_SNP_table <-
  nakano_SNPs %>% 
  dplyr::select(1:2) %>% 
    distinct() %>% 
    separate_wider_delim(.,Location,delim=":",names=c("chr","position"), cols_remove=FALSE) %>% 
    separate_wider_delim(.,position,delim="-",names=c("begin","term")) %>%
    mutate(chr=paste0("chr",chr)) 
nakano_SNP_gr <- nakano_SNP_table %>% 
  mutate("start" = begin, "end"=term) %>% 
    GRanges()
nakano_SNP_10k_gr <- nakano_SNP_table %>% 
  mutate(begin=as.numeric(begin),term=as.numeric(term)) %>% 
  mutate(start=begin-5000, end=term+5000) %>% 
  GRanges()

nakano_SNP_20k_gr <- nakano_SNP_table %>% 
  mutate(begin=as.numeric(begin),term=as.numeric(term)) %>% 
  mutate(start=begin-10000, end=term+10000) %>% 
  GRanges()

nakano_SNP_gr_check <- join_overlap_intersect(Collapsed_new_peaks_gr,nakano_SNP_gr) %>%
  as.data.frame()

nakano_SNP_gr_10k_check <- join_overlap_intersect(Collapsed_new_peaks_gr,nakano_SNP_10k_gr) %>%
  as.data.frame()

nakano_SNP_gr_20k_check <- join_overlap_intersect(Collapsed_new_peaks_gr,nakano_SNP_20k_gr) %>%
  as.data.frame()
nakano_SNP_gr_check <- join_overlap_intersect(Collapsed_new_peaks_gr,nakano_SNP_gr) %>%
  as.data.frame()
nakano_df <-nakano_SNP_gr_20k_check%>% 
  as.data.frame() %>%
  dplyr::select(Peakid, X.Uploaded_variation) %>% 
  dplyr::rename("SNPS"=X.Uploaded_variation) %>% 
  left_join(., Nine_te_df, by=("Peakid"="Peakid")) %>%
  dplyr::select(Peakid, SNPS,mrc,TEstatus) %>% 
  # left_join(., (Collapsed_new_peaks %>% 
  #             dplyr::select(Peakid,NCBI_gene,SYMBOL)), by=c("Peakid"="Peakid"))
  left_join(., (ATAC_3_lfc %>%
          dplyr::select(peak,med_3h_lfc)),by=c("Peakid"="peak")) %>% 
  left_join(., (ATAC_24_lfc %>%
              dplyr::select(peak,med_24h_lfc)),by=c("Peakid"="peak"))%>% 
    dplyr::filter(mrc !="NR") %>%
  dplyr::filter(mrc !="not_mrc") %>% 
 mutate(dist_to_SNP=case_when(
    Peakid %in% nakano_SNP_gr_check$Peakid &SNPS %in% nakano_SNP_gr_check$X.Uploaded_variation~ 0,
    Peakid %in% nakano_SNP_gr_10k_check$Peakid &SNPS %in% nakano_SNP_gr_10k_check$X.Uploaded_variation~ 10,
    Peakid %in% nakano_SNP_gr_20k_check$Peakid &SNPS %in% nakano_SNP_gr_20k_check$X.Uploaded_variation~ 20)) %>% 
    tidyr::unite(name,Peakid,SNPS, sep = "_", remove = FALSE) %>% 
  group_by(Peakid) %>% 
   summarize(name=unique(name),
           med_3h_lfc=unique(med_3h_lfc),
           med_24h_lfc=unique(med_24h_lfc),
           # AC_3h_lfc=unique(AC_3h_lfc),
           # AC_24h_lfc=unique(AC_24h_lfc),
           # RNA_3h_lfc=unique(RNA_3h_lfc),
           # RNA_24h_lfc=unique(RNA_24h_lfc),
          # repClass=paste(unique(repClass),collapse=":"),
           TEstatus=paste(unique(TEstatus),collapse=";"),
          # SYMBOL=paste(unique(SYMBOL),collapse=";"),
           # reheat=paste(unique(reheat),collapse=";"),
          mrc=unique(mrc),
          dist_to_SNP=min(dist_to_SNP))  %>% 
  arrange(., Peakid)
 
new_nakano_mat <- nakano_df%>% 
  ungroup() %>% 
  dplyr::select(name,med_3h_lfc, med_24h_lfc) %>% 
  column_to_rownames("name") %>% 
  as.matrix()
new_nakano_name_mat <- nakano_df %>% 
  ungroup() %>% 
  dplyr::select(name,TEstatus,mrc,dist_to_SNP)

row_anno_nakano <-
  rowAnnotation(
    TE_status=new_nakano_name_mat$TEstatus,
    # gwas_status=new_nakano__name_mat$GWAS,
    MRC=new_nakano_name_mat$mrc,
    direct_overlap=new_nakano_name_mat$dist_to_SNP,
    col= list(TE_status=c("TE_peak"="goldenrod",
                          "not_TE_peak"="lightblue"), 
              MRC = c("EAR_open" = "#F8766D",
                      "EAR_close" = "#f6483c",
                      "ESR_open" = "#7CAE00",
                      "ESR_close" = "#587b00",
                      "ESR_opcl"="grey40", 
                      "ESR_clop"="tan",
                      "LR_open" = "#00BFC4",
                      "LR_close" = "#008d91",
                      "NR" = "#C77CFF",
                      "not_mrc"="black"),
              # gwas_status=c("AF"="green",
              #               "HF"="orange", 
              #               "AF;HF"="purple3"),
              direct_overlap=c("0"="red",
                               "10"="pink",
                               "20"="tan2",
                               "50"="grey8")))
col_fun <- circlize::colorRamp2(c(-4, 0, 4), c("blue", "white", "red"))

simply_map_nakano <- ComplexHeatmap::Heatmap(new_nakano_mat,
                                             col= col_fun,
                        left_annotation = row_anno_nakano,
                        row_names_max_width = max_text_width(rownames(new_nakano_mat),  
                                                             gp=gpar(fontsize=16)),
                        heatmap_legend_param = list(direction = "horizontal"),
                        show_column_names = TRUE,
                        cluster_rows = FALSE,
                        cluster_columns = FALSE)

draw(simply_map_nakano, merge_legend = TRUE, heatmap_legend_side = "bottom", 
    annotation_legend_side = "bottom")

Version Author Date
7ea74a3 E. Renee Matthews 2025-02-10
nakano_gene <- data.frame(SYMBOL=c("FSCN2","FAAP100"))
nakano_gene <- nakano_gene %>% 
left_join(., (RNA_median_24_lfc %>% dplyr::select(ENTREZID,SYMBOL)), by = c ("SYMBOL"="SYMBOL")) 
  # left_join(., (gwas_df_short %>% dplyr::select(SNPS,Peakid,mrc,SYMBOL)),by = c("SYMBOL"="SYMBOL")) 

        
RNA_counts %>% 
  dplyr::filter(ENTREZID %in% nakano_gene$ENTREZID) %>% 
  pivot_longer(cols = !ENTREZID, names_to = "sample", values_to = "counts") %>% 
  left_join(., nakano_gene, by =c("ENTREZID"="ENTREZID")) %>% 
  separate("sample", into = c("trt","ind","time")) %>% 
  mutate(time=factor(time, levels = c("3h","24h"))) %>% 
  mutate(trt=factor(trt, levels= c("DOX","EPI","DNR","MTX","TRZ","VEH"))) %>% 
  ggplot(., aes (x = time, y=counts))+
  geom_boxplot(aes(fill=trt))+
  facet_wrap(~SYMBOL, scales="free_y")+
  ggtitle("RNA log 2 cpm of expressed gene")+
    scale_fill_manual(values = drug_pal)+
  theme_bw()+
  ylab("log2 cpm RNA")

Version Author Date
7ea74a3 E. Renee Matthews 2025-02-10
nakano_atac <- nakano_df %>% dplyr::select(Peakid)

ATAC_counts %>% 
  cpm(., log = TRUE) %>% 
   as.data.frame() %>%
  rename_with(.,~gsub(pattern = "Ind1_75", replacement = "1_",.)) %>%
  rename_with(.,~gsub(pattern = "Ind2_87", replacement = "2_",.)) %>%
  rename_with(.,~gsub(pattern = "Ind3_77", replacement = "3_",.)) %>%
  rename_with(.,~gsub(pattern = "Ind6_71", replacement = "6_",.)) %>%
  rename_with(.,~gsub( "DX" ,'DOX',.)) %>%
  rename_with(.,~gsub( "DA" ,'DNR',.)) %>%
  rename_with(.,~gsub( "E" ,'EPI',.)) %>%
  rename_with(.,~gsub( "T" ,'TRZ',.)) %>%
  rename_with(.,~gsub( "M" ,'MTX',.)) %>%
  rename_with(.,~gsub( "V" ,'VEH',.)) %>%
  rename_with(.,~gsub("24h","_24h",.)) %>%
  rename_with(.,~gsub("3h","_3h",.)) %>% 
  dplyr::filter(row.names(.) %in% nakano_atac$Peakid) %>% 
  mutate(Peakid = row.names(.)) %>% 
  pivot_longer(cols = !Peakid, names_to = "sample", values_to = "counts") %>% 
  left_join(., nakano_atac, by =c("Peakid"="Peakid")) %>% 
  separate("sample", into = c("ind","trt","time")) %>% 
  mutate(time=factor(time, levels = c("3h","24h"))) %>% 
  mutate(trt=factor(trt, levels= c("DOX","EPI","DNR","MTX","TRZ","VEH"))) %>% 
  ggplot(., aes (x = time, y=counts))+
  geom_boxplot(aes(fill=trt))+
  facet_wrap(~Peakid,scales="free_y")+
  ggtitle(" ATAC accessibility")+
  scale_fill_manual(values = drug_pal)+
  theme_bw()+
  ylab("log2 cpm ATAC")

Version Author Date
7ea74a3 E. Renee Matthews 2025-02-10

checking for H3K27 ac overlap

overlap_df_ggplot <- readRDS("data/Final_four_data/LFC_ATAC_K27ac.RDS")

new_gwas_df %>% 
  dplyr::filter(Peakid %in% overlap_df_ggplot$peakid)
# A tibble: 19 × 12
# Groups:   Peakid [16]
   name    Peakid SNPS  med_3h_lfc med_24h_lfc SYMBOL collapse repClass TEstatus
   <chr>   <chr>  <chr>      <dbl>       <dbl> <chr>  <chr>    <chr>    <chr>   
 1 chr1.1… chr1.… rs88…    -0.874       -0.983 CASZ1  ;        LINE     TE_peak 
 2 chr1.1… chr1.… rs17…    -0.798       -1.21  MTHFR  ;        LINE:SI… TE_peak 
 3 chr1.2… chr1.… rs12…     0.142       -1.07  ACTN2  ;        NA       not_TE_…
 4 chr10.… chr10… rs17…    -0.123       -0.857 ZMIZ1  ;        NA       not_TE_…
 5 chr11.… chr11… rs18…    -0.404       -0.852 HTATI… ;        SINE     TE_peak 
 6 chr11.… chr11… rs26…    -0.404       -0.852 HTATI… ;        SINE     TE_peak 
 7 chr11.… chr11… rs47…    -0.404       -0.852 HTATI… ;        SINE     TE_peak 
 8 chr15.… chr15… rs71…    -1.14        -2.94  HCN4   ;        NA       not_TE_…
 9 chr16.… chr16… rs77…    -0.156       -0.807 PGP    ;        Other:L… TE_peak 
10 chr16.… chr16… rs76…     0.0382      -0.555 ANTKMT ;        Other    TE_peak 
11 chr22.… chr22… rs14…    -0.175       -0.950 CELSR1 ;        SINE     TE_peak 
12 chr22.… chr22… rs19…    -0.175       -0.950 CELSR1 ;        SINE     TE_peak 
13 chr3.1… chr3.… rs56…    -0.636       -1.39  LSM3   ;        SINE:LI… TE_peak 
14 chr3.3… chr3.… rs68…    -0.0239      -0.989 SCN5A  ;        SINE     TE_peak 
15 chr3.4… chr3.… rs76…    -0.917       -0.537 KLHDC… ;        Other    TE_peak 
16 chr4.1… chr4.… rs22…    -0.0675       1.05  PITX2  ;        NA       not_TE_…
17 chr6.3… chr6.… rs31…     0.624        0.833 CDKN1A ;        NA       not_TE_…
18 chr7.1… chr7.… rs22…    -0.591       -1.11  KCNH2  ;        NA       not_TE_…
19 chr8.1… chr8.… rs35…    -0.257       -0.612 GATA4  ;        LTR:SIN… TE_peak 
# ℹ 3 more variables: GWAS <chr>, mrc <chr>, dist_to_SNP <dbl>
overlap_df_ggplot %>% 
  dplyr::filter(peakid %in% new_gwas_df$Peakid)
                     peakid                   Geneid   AC_3h_lfc AC_24h_lfc
1    chr1.10736684.10737808   chr1.10736800.10738525 -1.07130364 -0.3161770
2    chr1.11792123.11792871   chr1.11788673.11793441 -0.99402173 -0.7606922
3  chr1.236688731.236689166 chr1.236688392.236691210 -0.65889582 -1.4066351
4   chr10.79139073.79139940  chr10.79136506.79140349 -0.68866808 -0.9499010
5   chr11.19988504.19989024  chr11.19987440.19988841 -0.02974555 -0.5303745
6   chr15.73374622.73375198  chr15.73374063.73376621 -0.07183763 -0.6055360
7       chr16.719886.721785      chr16.719959.721831  0.10173815 -0.5844286
8     chr16.2214289.2215681    chr16.2214045.2215689 -0.16667020 -0.7756399
9   chr22.46417011.46418228  chr22.46417239.46418071 -0.76670700 -0.4177514
10   chr3.14232390.14233136   chr3.14232161.14233176  0.18102248 -0.4684514
11   chr3.38725644.38726351   chr3.38723566.38726669 -0.48988241 -0.7003138
12   chr3.49173142.49174143   chr3.49170739.49175549 -0.50498900 -0.2912939
13 chr4.110793293.110793943 chr4.110793293.110794147  0.07621543  0.6552841
14   chr6.36678380.36679788   chr6.36674959.36687167  0.53591918  1.4631670
15 chr7.150954727.150956459 chr7.150953391.150957009 -0.94929588 -1.0307303
16   chr8.11641900.11643102   chr8.11640911.11645051 -0.12144589 -0.5033708
    med_3h_lfc med_24h_lfc
1  -0.87377970  -0.9827495
2  -0.79827638  -1.2100494
3   0.14168149  -1.0686028
4  -0.12270258  -0.8573865
5  -0.40393132  -0.8518911
6  -1.14277387  -2.9394196
7   0.03824147  -0.5545150
8  -0.15641641  -0.8074414
9  -0.17506976  -0.9497148
10 -0.63602797  -1.3939025
11 -0.02385810  -0.9889708
12 -0.91700064  -0.5367741
13 -0.06749937   1.0534724
14  0.62408785   0.8327855
15 -0.59108390  -1.1085155
16 -0.25736705  -0.6120516
# Park_df %>% 
#   dplyr::filter(Peakid %in% overlap_df_ggplot$peakid)

# overlap_df_ggplot %>% 
#   dplyr::filter(peakid %in% Park_df$Peakid)

new_gwas_df %>% 
  ungroup() %>% 
  dplyr::filter(mrc=="EAR_open"|mrc=="ESR_open"|mrc=="LR_open") %>% 
  distinct(SNPS)
# A tibble: 21 × 1
   SNPS      
   <chr>     
 1 rs629301  
 2 rs660240  
 3 rs10824026
 4 rs7115242 
 5 rs11841562
 6 rs11642015
 7 rs7197197 
 8 rs9930504 
 9 rs2071502 
10 rs3803802 
# ℹ 11 more rows

sessionInfo()
R version 4.4.2 (2024-10-31 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 26100)

Matrix products: default


locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

time zone: America/Chicago
tzcode source: internal

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] circlize_0.4.16                         
 [2] arrow_18.1.0.1                          
 [3] readxl_1.4.3                            
 [4] smplot2_0.2.5                           
 [5] cowplot_1.1.3                           
 [6] ComplexHeatmap_2.22.0                   
 [7] ggrepel_0.9.6                           
 [8] plyranges_1.26.0                        
 [9] ggsignif_0.6.4                          
[10] genomation_1.38.0                       
[11] edgeR_4.4.1                             
[12] limma_3.62.2                            
[13] ggpubr_0.6.0                            
[14] BiocParallel_1.40.0                     
[15] ggVennDiagram_1.5.2                     
[16] scales_1.3.0                            
[17] VennDiagram_1.7.3                       
[18] futile.logger_1.4.3                     
[19] gridExtra_2.3                           
[20] ggfortify_0.4.17                        
[21] rtracklayer_1.66.0                      
[22] org.Hs.eg.db_3.20.0                     
[23] TxDb.Hsapiens.UCSC.hg38.knownGene_3.20.0
[24] GenomicFeatures_1.58.0                  
[25] AnnotationDbi_1.68.0                    
[26] Biobase_2.66.0                          
[27] GenomicRanges_1.58.0                    
[28] GenomeInfoDb_1.42.1                     
[29] IRanges_2.40.1                          
[30] S4Vectors_0.44.0                        
[31] BiocGenerics_0.52.0                     
[32] RColorBrewer_1.1-3                      
[33] broom_1.0.7                             
[34] kableExtra_1.4.0                        
[35] lubridate_1.9.4                         
[36] forcats_1.0.0                           
[37] stringr_1.5.1                           
[38] dplyr_1.1.4                             
[39] purrr_1.0.2                             
[40] readr_2.1.5                             
[41] tidyr_1.3.1                             
[42] tibble_3.2.1                            
[43] ggplot2_3.5.1                           
[44] tidyverse_2.0.0                         
[45] workflowr_1.7.1                         

loaded via a namespace (and not attached):
  [1] later_1.4.1                 BiocIO_1.16.0              
  [3] bitops_1.0-9                cellranger_1.1.0           
  [5] rpart_4.1.24                XML_3.99-0.18              
  [7] lifecycle_1.0.4             rstatix_0.7.2              
  [9] doParallel_1.0.17           rprojroot_2.0.4            
 [11] vroom_1.6.5                 processx_3.8.5             
 [13] lattice_0.22-6              backports_1.5.0            
 [15] magrittr_2.0.3              Hmisc_5.2-2                
 [17] sass_0.4.9                  rmarkdown_2.29             
 [19] jquerylib_0.1.4             yaml_2.3.10                
 [21] plotrix_3.8-4               httpuv_1.6.15              
 [23] DBI_1.2.3                   abind_1.4-8                
 [25] zlibbioc_1.52.0             RCurl_1.98-1.16            
 [27] nnet_7.3-20                 git2r_0.35.0               
 [29] GenomeInfoDbData_1.2.13     svglite_2.1.3              
 [31] codetools_0.2-20            DelayedArray_0.32.0        
 [33] xml2_1.3.6                  tidyselect_1.2.1           
 [35] shape_1.4.6.1               farver_2.1.2               
 [37] UCSC.utils_1.2.0            base64enc_0.1-3            
 [39] matrixStats_1.5.0           GenomicAlignments_1.42.0   
 [41] jsonlite_1.8.9              GetoptLong_1.0.5           
 [43] Formula_1.2-5               iterators_1.0.14           
 [45] systemfonts_1.2.1           foreach_1.5.2              
 [47] tools_4.4.2                 Rcpp_1.0.14                
 [49] glue_1.8.0                  SparseArray_1.6.1          
 [51] xfun_0.50                   MatrixGenerics_1.18.1      
 [53] withr_3.0.2                 formatR_1.14               
 [55] fastmap_1.2.0               callr_3.7.6                
 [57] digest_0.6.37               timechange_0.3.0           
 [59] R6_2.5.1                    seqPattern_1.38.0          
 [61] colorspace_2.1-1            RSQLite_2.3.9              
 [63] utf8_1.2.4                  generics_0.1.3             
 [65] data.table_1.16.4           htmlwidgets_1.6.4          
 [67] httr_1.4.7                  S4Arrays_1.6.0             
 [69] whisker_0.4.1               pkgconfig_2.0.3            
 [71] gtable_0.3.6                blob_1.2.4                 
 [73] impute_1.80.0               XVector_0.46.0             
 [75] htmltools_0.5.8.1           carData_3.0-5              
 [77] pwr_1.3-0                   clue_0.3-66                
 [79] png_0.1-8                   knitr_1.49                 
 [81] lambda.r_1.2.4              rstudioapi_0.17.1          
 [83] tzdb_0.4.0                  reshape2_1.4.4             
 [85] rjson_0.2.23                checkmate_2.3.2            
 [87] curl_6.2.0                  zoo_1.8-12                 
 [89] cachem_1.1.0                GlobalOptions_0.1.2        
 [91] KernSmooth_2.23-26          parallel_4.4.2             
 [93] foreign_0.8-88              restfulr_0.0.15            
 [95] pillar_1.10.1               vctrs_0.6.5                
 [97] promises_1.3.2              car_3.1-3                  
 [99] cluster_2.1.8               htmlTable_2.4.3            
[101] evaluate_1.0.3              magick_2.8.5               
[103] cli_3.6.3                   locfit_1.5-9.10            
[105] compiler_4.4.2              futile.options_1.0.1       
[107] Rsamtools_2.22.0            rlang_1.1.5                
[109] crayon_1.5.3                labeling_0.4.3             
[111] ps_1.8.1                    getPass_0.2-4              
[113] plyr_1.8.9                  fs_1.6.5                   
[115] stringi_1.8.4               viridisLite_0.4.2          
[117] gridBase_0.4-7              assertthat_0.2.1           
[119] munsell_0.5.1               Biostrings_2.74.1          
[121] Matrix_1.7-2                BSgenome_1.74.0            
[123] patchwork_1.3.0             hms_1.1.3                  
[125] bit64_4.6.0-1               KEGGREST_1.46.0            
[127] statmod_1.5.0               SummarizedExperiment_1.36.0
[129] memoise_2.0.1               bslib_0.8.0                
[131] bit_4.5.0.1