Last updated: 2025-01-24

Checks: 7 0

Knit directory: ATAC_learning/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20231016) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 8a21094. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/ACresp_SNP_table.csv
    Ignored:    data/ARR_SNP_table.csv
    Ignored:    data/All_merged_peaks.tsv
    Ignored:    data/CAD_gwas_dataframe.RDS
    Ignored:    data/CTX_SNP_table.csv
    Ignored:    data/Collapsed_expressed_NG_peak_table.csv
    Ignored:    data/DEG_toplist_sep_n45.RDS
    Ignored:    data/FRiP_first_run.txt
    Ignored:    data/Final_four_data/
    Ignored:    data/Frip_1_reads.csv
    Ignored:    data/Frip_2_reads.csv
    Ignored:    data/Frip_3_reads.csv
    Ignored:    data/Frip_4_reads.csv
    Ignored:    data/Frip_5_reads.csv
    Ignored:    data/Frip_6_reads.csv
    Ignored:    data/GO_KEGG_analysis/
    Ignored:    data/HF_SNP_table.csv
    Ignored:    data/Ind1_75DA24h_dedup_peaks.csv
    Ignored:    data/Ind1_TSS_peaks.RDS
    Ignored:    data/Ind1_firstfragment_files.txt
    Ignored:    data/Ind1_fragment_files.txt
    Ignored:    data/Ind1_peaks_list.RDS
    Ignored:    data/Ind1_summary.txt
    Ignored:    data/Ind2_TSS_peaks.RDS
    Ignored:    data/Ind2_fragment_files.txt
    Ignored:    data/Ind2_peaks_list.RDS
    Ignored:    data/Ind2_summary.txt
    Ignored:    data/Ind3_TSS_peaks.RDS
    Ignored:    data/Ind3_fragment_files.txt
    Ignored:    data/Ind3_peaks_list.RDS
    Ignored:    data/Ind3_summary.txt
    Ignored:    data/Ind4_79B24h_dedup_peaks.csv
    Ignored:    data/Ind4_TSS_peaks.RDS
    Ignored:    data/Ind4_V24h_fraglength.txt
    Ignored:    data/Ind4_fragment_files.txt
    Ignored:    data/Ind4_fragment_filesN.txt
    Ignored:    data/Ind4_peaks_list.RDS
    Ignored:    data/Ind4_summary.txt
    Ignored:    data/Ind5_TSS_peaks.RDS
    Ignored:    data/Ind5_fragment_files.txt
    Ignored:    data/Ind5_fragment_filesN.txt
    Ignored:    data/Ind5_peaks_list.RDS
    Ignored:    data/Ind5_summary.txt
    Ignored:    data/Ind6_TSS_peaks.RDS
    Ignored:    data/Ind6_fragment_files.txt
    Ignored:    data/Ind6_peaks_list.RDS
    Ignored:    data/Ind6_summary.txt
    Ignored:    data/Knowles_4.RDS
    Ignored:    data/Knowles_5.RDS
    Ignored:    data/Knowles_6.RDS
    Ignored:    data/LiSiLTDNRe_TE_df.RDS
    Ignored:    data/MI_gwas.RDS
    Ignored:    data/SNP_GWAS_PEAK_MRC_id
    Ignored:    data/SNP_GWAS_PEAK_MRC_id.csv
    Ignored:    data/SNP_gene_cat_list.tsv
    Ignored:    data/SNP_supp_schneider.RDS
    Ignored:    data/TE_info/
    Ignored:    data/TFmapnames.RDS
    Ignored:    data/all_TSSE_scores.RDS
    Ignored:    data/all_four_filtered_counts.txt
    Ignored:    data/aln_run1_results.txt
    Ignored:    data/anno_ind1_DA24h.RDS
    Ignored:    data/anno_ind4_V24h.RDS
    Ignored:    data/annotated_gwas_SNPS.csv
    Ignored:    data/background_n45_he_peaks.RDS
    Ignored:    data/cardiac_muscle_FRIP.csv
    Ignored:    data/cardiomyocyte_FRIP.csv
    Ignored:    data/col_ng_peak.csv
    Ignored:    data/cormotif_full_4_run.RDS
    Ignored:    data/cormotif_full_4_run_he.RDS
    Ignored:    data/cormotif_full_6_run.RDS
    Ignored:    data/cormotif_full_6_run_he.RDS
    Ignored:    data/cormotif_probability_45_list.csv
    Ignored:    data/cormotif_probability_45_list_he.csv
    Ignored:    data/cormotif_probability_all_6_list.csv
    Ignored:    data/cormotif_probability_all_6_list_he.csv
    Ignored:    data/datasave.RDS
    Ignored:    data/embryo_heart_FRIP.csv
    Ignored:    data/enhancer_list_ENCFF126UHK.bed
    Ignored:    data/enhancerdata/
    Ignored:    data/filt_Peaks_efit2.RDS
    Ignored:    data/filt_Peaks_efit2_bl.RDS
    Ignored:    data/filt_Peaks_efit2_n45.RDS
    Ignored:    data/first_Peaksummarycounts.csv
    Ignored:    data/first_run_frag_counts.txt
    Ignored:    data/full_bedfiles/
    Ignored:    data/gene_ref.csv
    Ignored:    data/gwas_1_dataframe.RDS
    Ignored:    data/gwas_2_dataframe.RDS
    Ignored:    data/gwas_3_dataframe.RDS
    Ignored:    data/gwas_4_dataframe.RDS
    Ignored:    data/gwas_5_dataframe.RDS
    Ignored:    data/high_conf_peak_counts.csv
    Ignored:    data/high_conf_peak_counts.txt
    Ignored:    data/high_conf_peaks_bl_counts.txt
    Ignored:    data/high_conf_peaks_counts.txt
    Ignored:    data/hits_files/
    Ignored:    data/hyper_files/
    Ignored:    data/hypo_files/
    Ignored:    data/ind1_DA24hpeaks.RDS
    Ignored:    data/ind1_TSSE.RDS
    Ignored:    data/ind2_TSSE.RDS
    Ignored:    data/ind3_TSSE.RDS
    Ignored:    data/ind4_TSSE.RDS
    Ignored:    data/ind4_V24hpeaks.RDS
    Ignored:    data/ind5_TSSE.RDS
    Ignored:    data/ind6_TSSE.RDS
    Ignored:    data/initial_complete_stats_run1.txt
    Ignored:    data/left_ventricle_FRIP.csv
    Ignored:    data/median_24_lfc.RDS
    Ignored:    data/median_3_lfc.RDS
    Ignored:    data/mergedPeads.gff
    Ignored:    data/mergedPeaks.gff
    Ignored:    data/motif_list_full
    Ignored:    data/motif_list_n45
    Ignored:    data/motif_list_n45.RDS
    Ignored:    data/multiqc_fastqc_run1.txt
    Ignored:    data/multiqc_fastqc_run2.txt
    Ignored:    data/multiqc_genestat_run1.txt
    Ignored:    data/multiqc_genestat_run2.txt
    Ignored:    data/my_hc_filt_counts.RDS
    Ignored:    data/my_hc_filt_counts_n45.RDS
    Ignored:    data/n45_bedfiles/
    Ignored:    data/n45_files
    Ignored:    data/other_papers/
    Ignored:    data/peakAnnoList_1.RDS
    Ignored:    data/peakAnnoList_2.RDS
    Ignored:    data/peakAnnoList_24_full.RDS
    Ignored:    data/peakAnnoList_24_n45.RDS
    Ignored:    data/peakAnnoList_3.RDS
    Ignored:    data/peakAnnoList_3_full.RDS
    Ignored:    data/peakAnnoList_3_n45.RDS
    Ignored:    data/peakAnnoList_4.RDS
    Ignored:    data/peakAnnoList_5.RDS
    Ignored:    data/peakAnnoList_6.RDS
    Ignored:    data/peakAnnoList_Eight.RDS
    Ignored:    data/peakAnnoList_full_motif.RDS
    Ignored:    data/peakAnnoList_n45_motif.RDS
    Ignored:    data/siglist_full.RDS
    Ignored:    data/siglist_n45.RDS
    Ignored:    data/summary_peakIDandReHeat.csv
    Ignored:    data/test.list.RDS
    Ignored:    data/testnames.txt
    Ignored:    data/toplist_6.RDS
    Ignored:    data/toplist_full.RDS
    Ignored:    data/toplist_full_DAR_6.RDS
    Ignored:    data/toplist_n45.RDS
    Ignored:    data/trimmed_seq_length.csv
    Ignored:    data/unclassified_full_set_peaks.RDS
    Ignored:    data/unclassified_n45_set_peaks.RDS
    Ignored:    data/xstreme/
    Ignored:    trimmed_Ind1_75DA24h_S7.nodup.splited.bam/

Untracked files:
    Untracked:  Correlationplot_scaled.pdf
    Untracked:  DOX_DAR_assess.Rmd
    Untracked:  EAR_2_plot.pdf
    Untracked:  ESR_1_plot.pdf
    Untracked:  Firstcorr plotATAC.pdf
    Untracked:  IND1_2_3_6_corrplot.pdf
    Untracked:  LR_3_plot.pdf
    Untracked:  NR_1_plot.pdf
    Untracked:  analysis/Expressed_RNA_associations.Rmd
    Untracked:  analysis/LFC_corr.Rmd
    Untracked:  analysis/SVA.Rmd
    Untracked:  analysis/Tan2020.Rmd
    Untracked:  analysis/my_hc_filt_counts.csv
    Untracked:  code/IGV_snapshot_code.R
    Untracked:  code/LongDARlist.R
    Untracked:  code/MRC_clusterlog2cpm.R
    Untracked:  code/TSSE.R
    Untracked:  code/just_for_Fun.R
    Untracked:  code/toplist_assembly.R
    Untracked:  dataredo.RData
    Untracked:  datasave.RDS
    Untracked:  lcpm_filtered_corplot.pdf
    Untracked:  log2cpmfragcount.pdf
    Untracked:  output/cormotif_probability_45_list.csv
    Untracked:  output/cormotif_probability_all_6_list.csv
    Untracked:  output_1_Mecom.txt
    Untracked:  setup.RData
    Untracked:  splited/
    Untracked:  trimmed_Ind1_75DA24h_S7.nodup.fragment.size.distribution.pdf
    Untracked:  trimmed_Ind1_75DA3h_S1.nodup.fragment.size.distribution.pdf

Unstaged changes:
    Modified:   ATAC_learning.Rproj
    Modified:   analysis/Enhancer_files_ff.Rmd
    Modified:   analysis/TE_analysis_ff.Rmd
    Modified:   analysis/final_plot_attempt.Rmd
    Modified:   analysis/index.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Correlation_of_SNPnPEAK.Rmd) and HTML (docs/Correlation_of_SNPnPEAK.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 8a21094 E. Renee Matthews 2025-01-24 new final figure updates
html bdb9ba0 E. Renee Matthews 2025-01-21 Build site.
Rmd b3248cc E. Renee Matthews 2025-01-21 adding in protein data
html 949b32b E. Renee Matthews 2025-01-21 Build site.
Rmd 1652dee E. Renee Matthews 2025-01-21 updated
html a505a0a E. Renee Matthews 2025-01-17 Build site.
Rmd 4a1d2bf E. Renee Matthews 2025-01-17 updates to plots
html 17a22e9 E. Renee Matthews 2025-01-17 Build site.
Rmd 06d6816 E. Renee Matthews 2025-01-17 fix
html 29becd1 E. Renee Matthews 2025-01-14 Build site.
Rmd 98d5af7 E. Renee Matthews 2025-01-14 adding in short heatmap
html 3267bc8 reneeisnowhere 2024-12-11 Build site.
Rmd e85df93 reneeisnowhere 2024-12-11 adding in neargene changes
html 1ae270c reneeisnowhere 2024-12-10 Build site.
Rmd 3f663f6 reneeisnowhere 2024-12-10 adding in the webpage
html 837ca5f reneeisnowhere 2024-12-10 Build site.
Rmd 53225d0 reneeisnowhere 2024-12-10 adding in the webpage
html 8df69e2 reneeisnowhere 2024-12-10 Build site.
Rmd 22ae683 reneeisnowhere 2024-12-10 adding in the webpage
Rmd a753574 reneeisnowhere 2024-12-10 adding in the webpage
html af43c4f reneeisnowhere 2024-12-10 Build site.
Rmd d73fc08 reneeisnowhere 2024-12-10 adding in the webpage
Rmd b13ed21 reneeisnowhere 2024-12-09 first update

library(tidyverse)
library(kableExtra)
library(broom)
library(RColorBrewer)
library("TxDb.Hsapiens.UCSC.hg38.knownGene")
library("org.Hs.eg.db")
library(rtracklayer)
library(ggfortify)
library(readr)
library(BiocGenerics)
library(gridExtra)
library(VennDiagram)
library(scales)
library(ggVennDiagram)
library(BiocParallel)
library(ggpubr)
library(edgeR)
library(genomation)
library(ggsignif)
library(plyranges)
library(ggrepel)
library(ComplexHeatmap)
library(cowplot)
library(smplot2)
library(readxl)
# Collapsed_H3k27ac_NG <- read_delim("data/Final_four_data/H3K27ac_files/Collapsed_H3k27ac_NG.txt",delim = "\t",col_names = TRUE)
Collapsed_new_peaks <- read_delim("data/Final_four_data/collapsed_new_peaks.txt", delim = "\t", col_names = TRUE)
Collapsed_new_peaks_gr <- Collapsed_new_peaks %>% dplyr::select(chr:Peakid) %>% GRanges()

peak_10kb_neargenes <-
  Collapsed_new_peaks %>% 
    dplyr::filter(dist_to_NG<5000&dist_to_NG>-5000) %>% 
  distinct(Peakid, .keep_all = TRUE) %>% 
  dplyr::select(Peakid,NCBI_gene,SYMBOL)

peak_20kb_neargenes <-
  Collapsed_new_peaks %>% 
    dplyr::filter(dist_to_NG<10000&dist_to_NG>-10000) %>% 
  distinct(Peakid, .keep_all = TRUE) %>% 
  dplyr::select(Peakid,NCBI_gene,SYMBOL)

peak_40kb_neargenes <-
  Collapsed_new_peaks %>% 
    dplyr::filter(dist_to_NG<20000&dist_to_NG>-20000) %>% 
  distinct(Peakid, .keep_all = TRUE) %>% 
  dplyr::select(Peakid,NCBI_gene,SYMBOL)

RNA_median_3_lfc <- readRDS("data/other_papers/RNA_median_3_lfc.RDS")
RNA_median_24_lfc <- readRDS("data/other_papers/RNA_median_24_lfc.RDS")
overlap_df_ggplot <- readRDS("data/Final_four_data/LFC_ATAC_K27ac.RDS")
AC_median_3_lfc <- read_csv("data/Final_four_data/AC_median_3_lfc.csv")
AC_median_24_lfc <- read_csv("data/Final_four_data/AC_median_24_lfc.csv")
ATAC_24_lfc <- read_csv("data/Final_four_data/median_24_lfc.csv") 
ATAC_3_lfc <- read_csv("data/Final_four_data/median_3_lfc.csv")

lt1<- readRDS("data/Final_four_data/updated_RNA_gene_lookuptable")

checklist <- lt1 %>% 
  separate_longer_delim(.,col= ENTREZID, delim= ":") %>% 
  separate_longer_delim(.,col= SYMBOL, delim= ":") %>% 
  dplyr::select(ENTREZID,SYMBOL) %>% 
  mutate(ENTREZID=as.numeric(ENTREZID)) %>% 
  distinct()

Schneider_all_SNPS <- read_delim("data/other_papers/Schneider_all_SNPS.txt", 
    delim = "\t", escape_double = FALSE, 
    trim_ws = TRUE)

Schneider_all_SNPS_df <- Schneider_all_SNPS %>% 
  dplyr::rename("RSID"="#Uploaded_variation") %>% 
  dplyr::select(RSID,Location,SYMBOL,Gene, SOURCE) %>%
  # dplyr::filter(SOURCE=="Ensembl") %>%
  distinct(RSID,Location,SYMBOL,.keep_all = TRUE) %>% 
  separate_wider_delim(Location,delim=":",names=c("Chr","Coords")) %>% 
  separate_wider_delim(Coords,delim= "-", names= c("Start","End")) %>% 
  mutate(Chr=paste0("chr",Chr)) %>% 
  group_by(RSID) %>% 
  summarize(Chr=unique(Chr),
            Start=unique(Start),
            End=unique(End),
            SYMBOL=paste(unique(SYMBOL),collapse=";"),
            Gene=paste(Gene,collapse=";"),
            SOURCE=paste(SOURCE,collapse=";")
            ) %>% 
  GRanges() %>% as.data.frame 

# schneider_closest_output <- readRDS("data/other_papers/Schneider_closestgene_SNP_file.RDS")
# left_join(., checklist, by=c("ENTREZID"="ENTREZID"))
# dplyr::select(RSID)

schneider_gr <-Schneider_all_SNPS_df%>%
  dplyr::select(seqnames,start,end,RSID:SOURCE) %>%
  distinct() %>% 
  GRanges()


schneider_10k_gr <- Schneider_all_SNPS_df%>%
  dplyr::select(seqnames,start,end,RSID:SOURCE) %>%
  mutate(start=(start-5000),end=(end+4999), width=10000) %>%
  distinct() %>% 
  GRanges()
 
schneider_20k_gr <- Schneider_all_SNPS_df%>%
  dplyr::select(seqnames,start,end,RSID:SOURCE) %>%
  mutate(start=(start-10000),end=(end+9999), width=20000) %>%
  distinct() %>% 
  GRanges()
 
schneider_50k_gr <- Schneider_all_SNPS_df%>%
  dplyr::select(seqnames,start,end,RSID:SOURCE) %>%
  mutate(start=(start-20000),end=(end+24999), width=50000) %>%
  distinct() %>% 
  GRanges()

SNP_peak_check <- join_overlap_intersect(Collapsed_new_peaks_gr,schneider_gr) %>%
  as.data.frame()
# 
SNP_peak_check_10k <- join_overlap_intersect(Collapsed_new_peaks_gr,schneider_10k_gr) %>%
  as.data.frame()
SNP_peak_check_20k <- join_overlap_intersect(Collapsed_new_peaks_gr,schneider_20k_gr) %>% 
  as.data.frame()
  SNP_peak_check_50k <- join_overlap_intersect(Collapsed_new_peaks_gr,schneider_50k_gr) %>% 
  as.data.frame()

# new_SNP_peak_check_10k <- readRDS("data/Final_four_data/new_SNP_peak_check_10k.RDS")
###pulled for ensemble closest gene associated 
# overlapSNP <- data.frame(RSID=new_SNP_peak_check_10k$RSID)
# write_delim(overlapSNP,"data/other_papers/overlapSNP.txt", delim = "\t")

overlap_SNP_gene_ensembl <- read_delim("data/other_papers/overlap_SNP_gene_ensembl.txt", 
    delim = "\t", escape_double = FALSE, 
    trim_ws = TRUE)
SNP_closest_genes <- overlap_SNP_gene_ensembl %>% 
  dplyr::select(Existing_variation,SYMBOL,HGNC_ID) %>% 
  distinct(Existing_variation,SYMBOL,.keep_all = TRUE) %>% 
  group_by(Existing_variation) %>% 
  mutate(SYMBOL=if_else(SYMBOL=="-","none",SYMBOL)) %>% 
  summarize(SYMBOL=paste(unique(SYMBOL),collapse=";")) %>% 
  mutate(SYMBOL=str_remove(SYMBOL,";none")) %>% 
  dplyr::rename("RSID"=Existing_variation)%>% 
  mutate(RSID=str_remove(RSID,",COS[^.]*$"))

# #Schneider_all_SNPS_df %>%
#   #dplyr::select(RSID:Gene)
### for collecting peak LFC data that overlaps with SNPs
ATAC_LFC <- Collapsed_new_peaks %>%
                 dplyr::select(Peakid) %>% 
  left_join(.,(ATAC_3_lfc %>% dplyr::select(peak, med_3h_lfc)), by=c("Peakid"="peak")) %>% 
  left_join(.,(ATAC_24_lfc %>% dplyr::select(peak, med_24h_lfc)), by=c("Peakid"="peak"))
            
#### adding in protein LFC data from Omar and Sayan's paper, unpublished data, pending acceptance.
# Proteomics_data <- read_excel("data/other_papers/Proteomics_data.xlsx", 
#     skip = 1)
# Dox_prot <- Proteomics_data %>%
#   dplyr::select(Protein, logFC,P.Value) %>%
#   left_join(., idmapping_2025_01_21ENTREZID, by =c("Protein"="From"))%>%
#   dplyr::rename("ENTREZID"=To) %>%
#   left_join(., idmapping_2025_01_SYMBOL, by=c("Protein"="From")) %>%
#   dplyr::rename("SYMBOL"=To)
# saveRDS(Dox_prot,"data/other_papers/Dox_proteome_paper.RDS")
Dox_prot <- readRDS("data/other_papers/Dox_proteome_paper.RDS")
proto_list <- Dox_prot %>% 
  group_by(SYMBOL,logFC) %>% 
  summarize(ENTREZID=paste(unique(ENTREZID),collapse=";"),
            Protein=paste(unique(Protein),collapse=";"),
            P.Value=min(P.Value))
# new_SNP_peak_check <-   readRDS("data/Final_four_data/new_SNP_peak_check.RDS")
point_only <- SNP_peak_check
SNP_10k_only <- SNP_peak_check_10k
SNP_20k_only <- SNP_peak_check_20k
SNP_50k_only <- SNP_peak_check_50k
# new_SNP_pc_gr <- new_SNP_peak_check_10k
# new_SNP_peak_check_10k# %>%
#   dplyr::filter(ENTREZID.x !=ENTREZID.y)
# schneider_gr %>% write_bed(.,"data/Final_four_data/meme_bed/Schnieder_SNPs.bed")

ATAC_peaks_gr <- Collapsed_new_peaks %>% GRanges()

# point_only <- join_overlap_intersect(schneider_gr,ATAC_peaks_gr)
# expand_schneider <- join_overlap_intersect(ATAC_peaks_gr,schneider_10k_gr)

Peaks_cutoff <- read_delim("data/Final_four_data/LCPM_matrix_ff.txt",delim = "/") %>% dplyr::select(Peakid)
  


schneider_short_list <- point_only %>% as.data.frame %>% dplyr::filter(Peakid %in%Peaks_cutoff$Peakid)
schneider_10k_list <- SNP_10k_only %>% distinct(RSID,Peakid)%>% dplyr::filter(Peakid %in%Peaks_cutoff$Peakid)
schneider_20k_list <- SNP_20k_only %>% distinct(RSID,Peakid)%>% dplyr::filter(Peakid %in%Peaks_cutoff$Peakid)
schneider_50k_list <- SNP_50k_only %>% distinct(RSID,Peakid)%>% dplyr::filter(Peakid %in%Peaks_cutoff$Peakid)

 # ATAC_RNA_direct <- ATAC_LFC %>%
 #  dplyr::filter(Peakid %in% schneider_short_list$Peakid) %>%
 #  left_join(., schneider_short_list %>% dplyr::select(Peakid:SYMBOL)) %>%
  ###now we are taking out the "-" and separating them for RNA 3hr and 24 hour matches
 #  separate_longer_delim(SYMBOL,delim=";")  %>%
 #  dplyr::filter(SYMBOL!="-") %>%
 # left_join(., RNA_median_3_lfc,by =c("SYMBOL"="SYMBOL")) %>%
 # 
 #  left_join(., RNA_median_24_lfc,by =c("ENTREZID"="ENTREZID", "SYMBOL"="SYMBOL"))
 # ATAC_RNA_direct %>% 
 #  ggplot(., aes(med_3h_lfc,RNA_3h_lfc)) +
 #  geom_point()+
 #   sm_statCorr(corr_method = 'pearson')+
 #   ggtitle("3 hour using direct overlap")
 #  ATAC_RNA_direct %>% 
 #  ggplot(., aes(med_24h_lfc,RNA_24h_lfc)) +
 #  geom_point()+
 #   sm_statCorr(corr_method = 'pearson')+
 #   ggtitle("24 hour using direct overlap")
 #  
 
ATAC_RNA_10kb <- ATAC_LFC %>% 
  dplyr::filter(Peakid %in% SNP_10k_only$Peakid) %>% 
  left_join(., SNP_10k_only %>% dplyr::select(Peakid:SYMBOL)) %>% 
  ###now we are taking out the "-" and separating them for RNA 3hr and 24 hour matches
  separate_longer_delim(SYMBOL,delim=";")  %>% 
  dplyr::filter(SYMBOL!="-") %>% 
 left_join(., RNA_median_3_lfc,by =c("SYMBOL"="SYMBOL")) %>%
  
  left_join(., RNA_median_24_lfc,by =c("ENTREZID"="ENTREZID", "SYMBOL"="SYMBOL"))  
#    
#   ATAC_RNA_10kb %>% 
#     ggplot(., aes(med_3h_lfc,RNA_3h_lfc)) +
#   geom_point()+
#    sm_statCorr(corr_method = 'pearson')+
#    ggtitle(" 3 hour correlation Using +/- 5kb")
# 
# ATAC_RNA_10kb %>%  
#   # dplyr::filter(Peakid %in% peak_50kb_neargenes$Peakid) %>% 
#   ggplot(., aes(med_24h_lfc,RNA_24h_lfc)) +
#   geom_point()+
#    sm_statCorr(corr_method = 'pearson')+
#    ggtitle(" 24 hour correlation Using +/- 5kb")
# 
# ATAC_RNA_10kb %>%  
#   dplyr::filter(Peakid %in% peak_10kb_neargenes$Peakid) %>%
#   ggplot(., aes(med_3h_lfc,RNA_3h_lfc)) +
#   geom_point()+
#    sm_statCorr(corr_method = 'pearson')+
#    ggtitle(" 3 hour correlation Using +/- 5kb\nfiltering peaks that are 5kb +/- away from TSS")
# 


# ATAC_RNA_10kb %>%  
#   dplyr::filter(Peakid %in% peak_10kb_neargenes$Peakid) %>%
#   ggplot(., aes(med_24h_lfc,RNA_24h_lfc)) +
#   geom_point()+
#    sm_statCorr(corr_method = 'pearson')+
#    ggtitle(" 24 hour correlation Using +/- 5kb\nfiltering peaks that are 5kb +/- away from TSS")
ATAC_RNA_20kb <- ATAC_LFC %>% 
  dplyr::filter(Peakid %in% SNP_20k_only$Peakid) %>% 
  left_join(., SNP_20k_only %>% dplyr::select(Peakid:SYMBOL)) %>% 
  ###now we are taking out the "-" and separating them for RNA 3hr and 24 hour matches
  separate_longer_delim(SYMBOL,delim=";")  %>% 
  dplyr::filter(SYMBOL!="-") %>% 
 left_join(., RNA_median_3_lfc,by =c("SYMBOL"="SYMBOL")) %>%
  
  left_join(., RNA_median_24_lfc,by =c("ENTREZID"="ENTREZID", "SYMBOL"="SYMBOL")) %>% 
   na.omit() 
#   ATAC_RNA_20kb %>% 
#     ggplot(., aes(med_3h_lfc,RNA_3h_lfc)) +
#   geom_point()+
#    sm_statCorr(corr_method = 'pearson')+
#    ggtitle(" 3 hour correlation Using +/- 10kb")
# ATAC_RNA_20kb%>% 
#   ggplot(., aes(med_24h_lfc,RNA_24h_lfc)) +
#   geom_point()+
#    sm_statCorr(corr_method = 'pearson')+
#    ggtitle(" 24 hour correlation Using +/- 10kb")

ATAC_RNA_50kb <- ATAC_LFC %>% 
  dplyr::filter(Peakid %in% SNP_20k_only$Peakid) %>% 
  left_join(., SNP_20k_only %>% dplyr::select(Peakid:SYMBOL)) %>% 
  ###now we are taking out the "-" and separating them for RNA 3hr and 24 hour matches
  separate_longer_delim(SYMBOL,delim=";")  %>% 
  dplyr::filter(SYMBOL!="-") %>% 
 left_join(., RNA_median_3_lfc,by =c("SYMBOL"="SYMBOL")) %>%
  
  left_join(., RNA_median_24_lfc,by =c("ENTREZID"="ENTREZID", "SYMBOL"="SYMBOL")) %>% 
   na.omit() 
# ATAC_RNA_50kb %>% 
#   ggplot(., aes(med_3h_lfc,RNA_3h_lfc)) +
#   geom_point()+
#    sm_statCorr(corr_method = 'pearson')+
#    ggtitle(" 3 hour correlation Using +/- 25 kb")
# 
# ATAC_RNA_50kb %>%  
#   ggplot(., aes(med_24h_lfc,RNA_24h_lfc)) +
#   geom_point()+
#    sm_statCorr(corr_method = 'pearson')+
#    ggtitle(" 24 hour correlation Using +/- 25 kb")
# 
# 
# ATAC_RNA_20kb %>% 
#   dplyr::filter(Peakid %in% peak_10kb_neargenes$Peakid)
Reheat_data <- readxl::read_excel("data/other_papers/jah36123-sup-0002-tables2.xlsx")
top_reheat <- Reheat_data %>%
  dplyr::filter(fisher_pvalue<0.005)
Nine_te_df <- readRDS("data/Final_four_data/Nine_group_TE_df.RDS")
###needed to change TE status to at least 1 bp overlap
match <- Nine_te_df %>% 
   mutate(TEstatus=if_else(!is.na(per_ol),"TE_peak","not_TE_peak")) %>% 
  distinct(Peakid,TEstatus,mrc,.keep_all = TRUE) 
# Knowles_dox_eQTL <- readRDS("data/Knowles_5.RDS")
# Knowles_mar_eQTL <- readRDS("data/Knowles_4.RDS")

# dox_eQTL_gr <- Knowles_dox_eQTL %>% 
#   distinct(RSID,.keep_all = TRUE) %>%
#   mutate(CHR_ID=(gsub("chr","",chr))) %>% 
#   dplyr::rename("SNPS"=RSID,"CHR_POS"=pos) %>% 
#   dplyr::select(CHR_ID, CHR_POS,SNPS) %>% 
#   mutate(CHR_ID=as.numeric(CHR_ID), CHR_POS=as.numeric(CHR_POS)) %>%
#   na.omit() %>%
#   mutate(gwas="eQTL") %>% 
#   mutate(start=CHR_POS, end=CHR_POS, chr=paste0("chr",CHR_ID)) %>% 
#   GRanges()
          
 
# mar_eQTL_gr <- Knowles_mar_eQTL %>% 
#   distinct(RSID,.keep_all = TRUE) %>%
#   mutate(CHR_ID=(gsub("chr","",chr))) %>% 
#   dplyr::rename("SNPS"=RSID,"CHR_POS"=pos) %>% 
#   dplyr::select(CHR_ID, CHR_POS,SNPS) %>% 
#   mutate(gwas="beQTL") %>% 
#   mutate(CHR_ID=as.numeric(CHR_ID), CHR_POS=as.numeric(CHR_POS)) %>%
#   na.omit() %>%
#   mutate(start=CHR_POS, end=CHR_POS, chr=paste0("chr",CHR_ID)) %>% 
#   GRanges()
# mar_eqtl_SNPS <-
#   join_overlap_intersect(ATAC_peaks_gr,mar_eQTL_gr) %>% 
#   as.data.frame() 
# 
# dox_eqtl_SNPs <-
#   join_overlap_intersect(ATAC_peaks_gr,dox_eQTL_gr) %>%
#   as.data.frame() 
# 
# test <- dox_eqtl_SNPs %>% 
#   dplyr::filter(Peakid %in% new_SNP_peak_check_10k$Peakid)

# join_overlap_intersect((new_SNP_peak_check_10k %>% GRanges() ),mar_eQTL_gr) %>%
#   as.data.frame() 

Peaks within 5kb +/- RNA TSS

schneider_df <-
schneider_50k_list%>% 
  as.data.frame() %>%
  left_join(., peak_10kb_neargenes, by=c("Peakid"="Peakid")) %>%
  left_join(., (ATAC_3_lfc %>%
                  dplyr::select(peak,med_3h_lfc)),by=c("Peakid"="peak")) %>% 
  left_join(., (ATAC_24_lfc %>%
                  dplyr::select(peak,med_24h_lfc)),by=c("Peakid"="peak"))%>% 
  left_join(., RNA_median_3_lfc,by =c("NCBI_gene"="ENTREZID", "SYMBOL"="SYMBOL")) %>%
  left_join(., RNA_median_24_lfc,by =c("NCBI_gene"="ENTREZID", "SYMBOL"="SYMBOL")) %>% 
  mutate(reheat=if_else(SYMBOL %in% Reheat_data$gene,"reheat_gene","not_reheat_gene")) %>% 
  distinct(RSID,Peakid,.keep_all = TRUE) %>% 
  tidyr::unite(name,RSID,SYMBOL,Peakid,sep ="_",remove=FALSE) %>% 
  left_join(.,(match %>% 
                 group_by(Peakid) %>%
                 filter(!(TEstatus=="not_TE_peak" & any (TEstatus == "TE_peak"))) %>% 
                 ungroup() %>%
                 distinct(TEstatus,Peakid,.keep_all = TRUE)),
            by = c("Peakid"="Peakid")) %>% 
  mutate(dist_to_SNP=case_when(Peakid %in% schneider_short_list$Peakid &RSID %in% schneider_short_list$RSID~ 0,
                               Peakid %in% schneider_10k_list$Peakid &RSID %in% schneider_10k_list$RSID~ 10,
    Peakid %in% schneider_20k_list$Peakid &RSID %in% schneider_20k_list$RSID~ 20,
     Peakid %in% schneider_50k_list$Peakid &RSID %in% schneider_50k_list$RSID ~ 50)) %>% 
  group_by(RSID,Peakid) %>% 
  # mutate(Keep=case_when(RSID))
  # group_by(Peakid) %>% 
 summarize(name=unique(name),
           # RSID=unique(RSID),
           med_3h_lfc=unique(med_3h_lfc),
           med_24h_lfc=unique(med_24h_lfc),
           # AC_3h_lfc=unique(AC_3h_lfc),
           # AC_24h_lfc=unique(AC_24h_lfc),
           RNA_3h_lfc=unique(RNA_3h_lfc),
           RNA_24h_lfc=unique(RNA_24h_lfc),
          repClass=paste(unique(repClass),collapse=":"),
           TEstatus=paste(unique(TEstatus),collapse=";"),
          SYMBOL=paste(unique(SYMBOL),collapse=";"),
           reheat=paste(unique(reheat),collapse=";"),
          mrc=unique(mrc),
          dist_to_SNP=min(dist_to_SNP)) #%>% 
  # mutate(point_ol=if_else(RSID %in% point_only$RSID,"yes","no")) %>% 
  # mutate(eQTL=if_else(RSID %in% dox_eqtl_SNPs$SNPS,"yes",if_else(Peakid %in% mar_eqtl_SNPS$Peakid,"yes","no")))

schneider_mat <- schneider_df %>% 
  ungroup() %>% 
  dplyr::select(name,med_3h_lfc:RNA_24h_lfc) %>% 
  column_to_rownames("name") %>% 
  as.matrix()
schneider_name_mat <- schneider_df %>% 
  ungroup() %>% 
  dplyr::select(name,TEstatus,mrc,reheat,dist_to_SNP)

row_anno <- ComplexHeatmap::rowAnnotation(TE_status=schneider_name_mat$TEstatus,reheat_status=schneider_name_mat$reheat,MRC=schneider_name_mat$mrc,direct_overlap=schneider_name_mat$dist_to_SNP,col= list(TE_status=c("TE_peak"="goldenrod",
                                "TE_peak;not_TE_peak"="goldenrod",
                                "not_TE_peak;TE_peak"="goldenrod",
                                "not_TE_peak"="lightblue"),                                                     MRC = c("EAR_open" = "#F8766D",                                                                    "EAR_close" = "#f6483c","ESR_open" = "#7CAE00",
                            "ESR_close" = "#587b00",
                            "ESR_opcl"="grey40",
                            "ESR_C"="grey40",
                            "ESR_clop"="tan",
                             "ESR_D"="tan",
                               "ESR_OC" = "#6a9500",
                                "LR_open" = "#00BFC4",
                              "LR_close" = "#008d91",
                              "NR" = "#C77CFF",
                                "not_mrc"="black"),
                    reheat_status=c("reheat_gene"="green","not_reheat_gene"="orange"),
                    direct_overlap=c("0"="red","10"="pink","20"="tan2","50"="grey8")))
mat2 <- schneider_mat  
# rownames(mat2)[1] = paste(c(letters, LETTERS), collapse = "")
simply_map <- ComplexHeatmap::Heatmap(schneider_mat,
                        left_annotation = row_anno,
                        show_row_names = TRUE,
                        # row_names_side = "left",
                        row_names_max_width= max_text_width(rownames(schneider_mat),                                                        gp=gpar(fontsize=8)),
                        heatmap_legend_param = list(direction = "horizontal"),
                        show_column_names = TRUE,
                        cluster_rows = FALSE,
                        cluster_columns = FALSE)

draw(simply_map, merge_legend = TRUE, heatmap_legend_side = "bottom", 
    annotation_legend_side = "bottom")

Version Author Date
29becd1 E. Renee Matthews 2025-01-14
3267bc8 reneeisnowhere 2024-12-11
af43c4f reneeisnowhere 2024-12-10

Peaks within 10 kb +/- of RNA TSS

schneider_df <-
schneider_50k_list%>% 
  as.data.frame() %>%
  left_join(., peak_20kb_neargenes, by=c("Peakid"="Peakid")) %>%
  left_join(., (ATAC_3_lfc %>%
                  dplyr::select(peak,med_3h_lfc)),by=c("Peakid"="peak")) %>% 
  left_join(., (ATAC_24_lfc %>%
                  dplyr::select(peak,med_24h_lfc)),by=c("Peakid"="peak"))%>% 
  left_join(., RNA_median_3_lfc,by =c("NCBI_gene"="ENTREZID", "SYMBOL"="SYMBOL")) %>%
  left_join(., RNA_median_24_lfc,by =c("NCBI_gene"="ENTREZID", "SYMBOL"="SYMBOL")) %>% 
  mutate(reheat=if_else(SYMBOL %in% Reheat_data$gene,"reheat_gene","not_reheat_gene")) %>% 
  distinct(RSID,Peakid,.keep_all = TRUE) %>% 
  tidyr::unite(name,RSID,SYMBOL,Peakid,sep ="_",remove=FALSE) %>% 
  left_join(.,(match %>% 
                 group_by(Peakid) %>%
                 filter(!(TEstatus=="not_TE_peak" & any (TEstatus == "TE_peak"))) %>% 
                 ungroup() %>%
                 distinct(TEstatus,Peakid,.keep_all = TRUE)),
            by = c("Peakid"="Peakid")) %>% 
  mutate(dist_to_SNP=case_when(Peakid %in% schneider_short_list$Peakid &RSID %in% schneider_short_list$RSID~ 0,
                               Peakid %in% schneider_10k_list$Peakid &RSID %in% schneider_10k_list$RSID~ 10,
    Peakid %in% schneider_20k_list$Peakid &RSID %in% schneider_20k_list$RSID~ 20,
     Peakid %in% schneider_50k_list$Peakid &RSID %in% schneider_50k_list$RSID ~ 50)) %>% 
  group_by(RSID,Peakid) %>% 
  # mutate(Keep=case_when(RSID))
  # group_by(Peakid) %>% 
 summarize(name=unique(name),
           # RSID=unique(RSID),
           med_3h_lfc=unique(med_3h_lfc),
           med_24h_lfc=unique(med_24h_lfc),
           # AC_3h_lfc=unique(AC_3h_lfc),
           # AC_24h_lfc=unique(AC_24h_lfc),
           RNA_3h_lfc=unique(RNA_3h_lfc),
           RNA_24h_lfc=unique(RNA_24h_lfc),
          repClass=paste(unique(repClass),collapse=":"),
           TEstatus=paste(unique(TEstatus),collapse=";"),
          SYMBOL=paste(unique(SYMBOL),collapse=";"),
           reheat=paste(unique(reheat),collapse=";"),
          mrc=unique(mrc),
          dist_to_SNP=min(dist_to_SNP)) #%>% 
  # mutate(point_ol=if_else(RSID %in% point_only$RSID,"yes","no")) %>% 
  # mutate(eQTL=if_else(RSID %in% dox_eqtl_SNPs$SNPS,"yes",if_else(Peakid %in% mar_eqtl_SNPS$Peakid,"yes","no")))

schneider_mat <- schneider_df %>% 
  ungroup() %>% 
  dplyr::select(name,med_3h_lfc:RNA_24h_lfc) %>% 
  column_to_rownames("name") %>% 
  as.matrix()
schneider_name_mat <- schneider_df %>% 
  ungroup() %>% 
  dplyr::select(name,TEstatus,mrc,reheat,dist_to_SNP)

row_anno <- ComplexHeatmap::rowAnnotation(TE_status=schneider_name_mat$TEstatus,reheat_status=schneider_name_mat$reheat,MRC=schneider_name_mat$mrc,direct_overlap=schneider_name_mat$dist_to_SNP,col= list(TE_status=c("TE_peak"="goldenrod",
                                "TE_peak;not_TE_peak"="goldenrod",
                                "not_TE_peak;TE_peak"="goldenrod",
                                "not_TE_peak"="lightblue"),                                                     MRC = c("EAR_open" = "#F8766D",                                                                    "EAR_close" = "#f6483c","ESR_open" = "#7CAE00",
                            "ESR_close" = "#587b00",
                            "ESR_opcl"="grey40",
                            "ESR_C"="grey40",
                            "ESR_clop"="tan",
                             "ESR_D"="tan",
                               "ESR_OC" = "#6a9500",
                                "LR_open" = "#00BFC4",
                              "LR_close" = "#008d91",
                              "NR" = "#C77CFF",
                                "not_mrc"="black"),
                    reheat_status=c("reheat_gene"="green","not_reheat_gene"="orange"),
                    direct_overlap=c("0"="red","10"="pink","20"="tan2","50"="grey8")))
mat2 <- schneider_mat  
# rownames(mat2)[1] = paste(c(letters, LETTERS), collapse = "")
simply_map <- ComplexHeatmap::Heatmap(schneider_mat,
                        left_annotation = row_anno,
                        show_row_names = TRUE,
                        # row_names_side = "left",
                        row_names_max_width= max_text_width(rownames(schneider_mat),                                                        gp=gpar(fontsize=8)),
                        heatmap_legend_param = list(direction = "horizontal"),
                        show_column_names = TRUE,
                        cluster_rows = FALSE,
                        cluster_columns = FALSE)

draw(simply_map, merge_legend = TRUE, heatmap_legend_side = "bottom", 
    annotation_legend_side = "bottom")

Version Author Date
29becd1 E. Renee Matthews 2025-01-14
3267bc8 reneeisnowhere 2024-12-11

Peaks within +/-20 kb RNA TSS

schneider_df <-
schneider_50k_list%>% 
  as.data.frame() %>%
  left_join(., peak_40kb_neargenes, by=c("Peakid"="Peakid")) %>%
  left_join(., (ATAC_3_lfc %>%
                  dplyr::select(peak,med_3h_lfc)),by=c("Peakid"="peak")) %>% 
  left_join(., (ATAC_24_lfc %>%
                  dplyr::select(peak,med_24h_lfc)),by=c("Peakid"="peak"))%>% 
  left_join(., RNA_median_3_lfc,by =c("NCBI_gene"="ENTREZID", "SYMBOL"="SYMBOL")) %>%
  left_join(., RNA_median_24_lfc,by =c("NCBI_gene"="ENTREZID", "SYMBOL"="SYMBOL")) %>% 
  mutate(reheat=if_else(SYMBOL %in% Reheat_data$gene,"reheat_gene","not_reheat_gene")) %>% 
  distinct(RSID,Peakid,.keep_all = TRUE) %>% 
  tidyr::unite(name,RSID,SYMBOL,Peakid,sep ="_",remove=FALSE) %>% 
  left_join(.,(match %>% 
                 group_by(Peakid) %>%
                 filter(!(TEstatus=="not_TE_peak" & any (TEstatus == "TE_peak"))) %>% 
                 ungroup() %>%
                 distinct(TEstatus,Peakid,.keep_all = TRUE)),
            by = c("Peakid"="Peakid")) %>% 
  mutate(dist_to_SNP=case_when(Peakid %in% schneider_short_list$Peakid &RSID %in% schneider_short_list$RSID~ 0,
                               Peakid %in% schneider_10k_list$Peakid &RSID %in% schneider_10k_list$RSID~ 10,
    Peakid %in% schneider_20k_list$Peakid &RSID %in% schneider_20k_list$RSID~ 20,
     Peakid %in% schneider_50k_list$Peakid &RSID %in% schneider_50k_list$RSID ~ 50)) %>% 
  group_by(RSID,Peakid) %>% 
  # mutate(Keep=case_when(RSID))
  # group_by(Peakid) %>% 
 summarize(name=unique(name),
           # RSID=unique(RSID),
           med_3h_lfc=unique(med_3h_lfc),
           med_24h_lfc=unique(med_24h_lfc),
           # AC_3h_lfc=unique(AC_3h_lfc),
           # AC_24h_lfc=unique(AC_24h_lfc),
           RNA_3h_lfc=unique(RNA_3h_lfc),
           RNA_24h_lfc=unique(RNA_24h_lfc),
          repClass=paste(unique(repClass),collapse=":"),
           TEstatus=paste(unique(TEstatus),collapse=";"),
          SYMBOL=paste(unique(SYMBOL),collapse=";"),
           reheat=paste(unique(reheat),collapse=";"),
          mrc=unique(mrc),
          dist_to_SNP=min(dist_to_SNP)) #%>% 
  # mutate(point_ol=if_else(RSID %in% point_only$RSID,"yes","no")) %>% 
  # mutate(eQTL=if_else(RSID %in% dox_eqtl_SNPs$SNPS,"yes",if_else(Peakid %in% mar_eqtl_SNPS$Peakid,"yes","no")))

schneider_mat <- schneider_df %>% 
  ungroup() %>% 
  dplyr::select(name,med_3h_lfc:RNA_24h_lfc) %>% 
  column_to_rownames("name") %>% 
  as.matrix()
schneider_name_mat <- schneider_df %>% 
  ungroup() %>% 
  dplyr::select(name,TEstatus,mrc,reheat,dist_to_SNP)

row_anno <- ComplexHeatmap::rowAnnotation(TE_status=schneider_name_mat$TEstatus,reheat_status=schneider_name_mat$reheat,MRC=schneider_name_mat$mrc,direct_overlap=schneider_name_mat$dist_to_SNP,col= list(TE_status=c("TE_peak"="goldenrod",
                                "TE_peak;not_TE_peak"="goldenrod",
                                "not_TE_peak;TE_peak"="goldenrod",
                                "not_TE_peak"="lightblue"),                                                     MRC = c("EAR_open" = "#F8766D",                                                                    "EAR_close" = "#f6483c","ESR_open" = "#7CAE00",
                            "ESR_close" = "#587b00",
                            "ESR_opcl"="grey40",
                            "ESR_C"="grey40",
                            "ESR_clop"="tan",
                             "ESR_D"="tan",
                               "ESR_OC" = "#6a9500",
                                "LR_open" = "#00BFC4",
                              "LR_close" = "#008d91",
                              "NR" = "#C77CFF",
                                "not_mrc"="black"),
                    reheat_status=c("reheat_gene"="green","not_reheat_gene"="orange"),
                    direct_overlap=c("0"="red","10"="pink","20"="tan2","50"="grey8")))
mat2 <- schneider_mat  
# rownames(mat2)[1] = paste(c(letters, LETTERS), collapse = "")
simply_map <- ComplexHeatmap::Heatmap(schneider_mat,
                        left_annotation = row_anno,
                        show_row_names = TRUE,
                        # row_names_side = "left",
                        row_names_max_width= max_text_width(rownames(schneider_mat),                                                        gp=gpar(fontsize=8)),
                        heatmap_legend_param = list(direction = "horizontal"),
                        show_column_names = TRUE,
                        cluster_rows = FALSE,
                        cluster_columns = FALSE)

draw(simply_map, merge_legend = TRUE, heatmap_legend_side = "bottom", 
    annotation_legend_side = "bottom")

Version Author Date
29becd1 E. Renee Matthews 2025-01-14
3267bc8 reneeisnowhere 2024-12-11

Final +/-5kb peak-TSS of expressed RNA, +/-25 kb of SNP

schneider_df_short <-schneider_20k_list%>%
  as.data.frame() %>%
  left_join(., peak_10kb_neargenes, by=c("Peakid"="Peakid")) %>%
  left_join(., (ATAC_3_lfc %>%
                  dplyr::select(peak,med_3h_lfc)),by=c("Peakid"="peak")) %>% 
  left_join(., (ATAC_24_lfc %>%
                  dplyr::select(peak,med_24h_lfc)),by=c("Peakid"="peak"))%>% 
  left_join(., RNA_median_3_lfc,by =c("NCBI_gene"="ENTREZID", "SYMBOL"="SYMBOL")) %>%
  left_join(., RNA_median_24_lfc,by =c("NCBI_gene"="ENTREZID", "SYMBOL"="SYMBOL")) %>% 
  na.omit(RNA_median_24_lfc) %>% 
  # mutate(reheat=if_else(SYMBOL %in% Reheat_data$gene,"reheat_gene","not_reheat_gene")) %>% 
  distinct(RSID,Peakid,.keep_all = TRUE) %>% 
  tidyr::unite(name,RSID,SYMBOL,Peakid,sep ="_",remove=FALSE) %>% 
  left_join(.,(match %>% 
                 group_by(Peakid) %>%
                 filter(!(TEstatus=="not_TE_peak" & any (TEstatus == "TE_peak"))) %>% 
                 ungroup() %>%
                 distinct(TEstatus,Peakid,.keep_all = TRUE)),
            by = c("Peakid"="Peakid")) %>% 
  mutate(dist_to_SNP=case_when(Peakid %in% schneider_short_list$Peakid &RSID %in% schneider_short_list$RSID~ 0,
                               Peakid %in% schneider_10k_list$Peakid &RSID %in% schneider_10k_list$RSID~ 10,
    Peakid %in% schneider_20k_list$Peakid &RSID %in% schneider_20k_list$RSID~ 20,
     Peakid %in% schneider_50k_list$Peakid &RSID %in% schneider_50k_list$RSID ~ 50)) %>% 
  group_by(RSID,Peakid) %>% 
  # mutate(Keep=case_when(RSID))
  # group_by(Peakid) %>% 
 summarize(name=unique(name),
           # RSID=unique(RSID),
           med_3h_lfc=unique(med_3h_lfc),
           med_24h_lfc=unique(med_24h_lfc),
           # AC_3h_lfc=unique(AC_3h_lfc),
           # AC_24h_lfc=unique(AC_24h_lfc),
           RNA_3h_lfc=unique(RNA_3h_lfc),
           RNA_24h_lfc=unique(RNA_24h_lfc),
          repClass=paste(unique(repClass),collapse=":"),
           TEstatus=paste(unique(TEstatus),collapse=";"),
          SYMBOL=paste(unique(SYMBOL),collapse=";"),
           # reheat=paste(unique(reheat),collapse=";"),
          mrc=unique(mrc),
          dist_to_SNP=min(dist_to_SNP))  %>% 
  arrange(., Peakid) %>% 
  left_join(., proto_list, by=c("SYMBOL"="SYMBOL"))

schneider_mat_short <- schneider_df_short %>% 
  ungroup() %>% 
  dplyr::select(name,med_3h_lfc:RNA_24h_lfc,logFC) %>% 
  column_to_rownames("name") %>% 
  as.matrix()
schneider_name_mat_short <- schneider_df_short %>% 
  ungroup() %>% 
  dplyr::select(name,TEstatus,mrc,dist_to_SNP)

row_anno_short <- ComplexHeatmap::rowAnnotation(TE_status=schneider_name_mat_short$TEstatus,reheat_status=schneider_name_mat_short$reheat,MRC=schneider_name_mat_short$mrc,direct_overlap=schneider_name_mat_short$dist_to_SNP,col= list(TE_status=c("TE_peak"="goldenrod",
                                "TE_peak;not_TE_peak"="goldenrod",
                                "not_TE_peak;TE_peak"="goldenrod",
                                "not_TE_peak"="lightblue"),                                                     MRC = c("EAR_open" = "#F8766D",                                                                    "EAR_close" = "#f6483c","ESR_open" = "#7CAE00",
                            "ESR_close" = "#587b00",
                            "ESR_opcl"="grey40",
                            "ESR_C"="grey40",
                            "ESR_clop"="tan",
                             "ESR_D"="tan",
                               "ESR_OC" = "#6a9500",
                                "LR_open" = "#00BFC4",
                              "LR_close" = "#008d91",
                              "NR" = "#C77CFF",
                                "not_mrc"="black"),
                    reheat_status=c("reheat_gene"="green","not_reheat_gene"="orange"),
                    direct_overlap=c("0"="red","10"="pink","20"="tan2","50"="grey8")))
mat2_short <- schneider_mat_short  
# rownames(mat2)[1] = paste(c(letters, LETTERS), collapse = "")
simply_map_short <- ComplexHeatmap::Heatmap(schneider_mat_short,
                        left_annotation = row_anno_short,
                        show_row_names = TRUE,
                        # row_names_side = "left",
                        row_names_max_width= max_text_width(rownames(schneider_mat_short),                                                        gp=gpar(fontsize=16)),
                        heatmap_legend_param = list(direction = "horizontal"),
                        show_column_names = TRUE,
                        cluster_rows = FALSE,
                        cluster_columns = FALSE)

draw(simply_map_short, merge_legend = TRUE, heatmap_legend_side = "bottom", 
    annotation_legend_side = "bottom")

Version Author Date
bdb9ba0 E. Renee Matthews 2025-01-21
949b32b E. Renee Matthews 2025-01-21
17a22e9 E. Renee Matthews 2025-01-17
29becd1 E. Renee Matthews 2025-01-14
# saveRDS(schneider_df_short,"data/Final_four_data/schneider_df_short.RDS")

Genes of interest

drug_pal <- c("#8B006D","#DF707E","#F1B72B", "#3386DD","#707031","#41B333")
# K27_counts <-  readRDS("data/Final_four_data/All_Raodahpeaks.RDS")
ATAC_counts <- readRDS("data/Final_four_data/x4_filtered.RDS")
RNA_counts <- readRDS("data/other_papers/cpmcount.RDS") %>%
  dplyr::rename_with(.,~gsub(pattern="Da",replacement="DNR",.)) %>% 
 dplyr::rename_with(.,~gsub(pattern="Do",replacement="DOX",.)) %>% 
  dplyr::rename_with(.,~gsub(pattern="Ep",replacement="EPI",.)) %>% 
   dplyr::rename_with(.,~gsub(pattern="Mi",replacement="MTX",.)) %>% 
    dplyr::rename_with(.,~gsub(pattern="Tr",replacement="TRZ",.)) %>% 
       dplyr::rename_with(.,~gsub(pattern="Ve",replacement="VEH",.)) %>% 
  rownames_to_column("ENTREZID")
df_gene_schneider <- data.frame(SYMBOL=c("PRDX6","ANKRD4", "SLC9C2", "TNFSF4", "DARS2", "KLHL20"))
# ,ENTREZID= c(9585,26051,284525,7292,55157,27252))
df_gene_schneider_RNA <- df_gene_schneider %>% 
left_join(., (RNA_median_24_lfc %>% dplyr::select(ENTREZID,SYMBOL)), by = c ("SYMBOL"="SYMBOL")) %>% 
   left_join(., (schneider_df_short %>% dplyr::select(RSID,Peakid,SYMBOL)),by = c("SYMBOL"="SYMBOL")) %>% distinct(SYMBOL,.keep_all = TRUE)

df_gene_schneider_ATAC <- df_gene_schneider %>% 
left_join(., (RNA_median_24_lfc %>% dplyr::select(ENTREZID,SYMBOL)), by = c ("SYMBOL"="SYMBOL")) %>% 
   left_join(., (schneider_df_short %>% dplyr::select(RSID,Peakid,SYMBOL)),by = c("SYMBOL"="SYMBOL")) %>% distinct(Peakid,SYMBOL,.keep_all = TRUE)
RNA_counts %>% 
  dplyr::filter(ENTREZID %in% df_gene_schneider_RNA$ENTREZID) %>% 
  pivot_longer(cols = !ENTREZID, names_to = "sample", values_to = "counts") %>% 
  # mutate(ENTREZID=as.numeric(ENTREZID)) %>% 
  left_join(., df_gene_schneider_RNA, by =c("ENTREZID"="ENTREZID")) %>%  
  # left_join(., df_gene_schneider, by =c("ENTREZID"="ENTREZID.x")) %>% 
  separate("sample", into = c("trt","ind","time")) %>% 
  mutate(time=factor(time, levels = c("3h","24h"))) %>% 
  mutate(trt=factor(trt, levels= c("DOX","EPI","DNR","MTX","TRZ","VEH"))) %>% 
  ggplot(., aes (x = time, y=counts))+
  geom_boxplot(aes(fill=trt))+
  facet_wrap(~SYMBOL, scales="free_y")+
    scale_fill_manual(values = drug_pal)+
  ggtitle("RNA LFC of expressed gene")+
  theme_bw()+
  ylab("log2 cpm RNA")

ATAC_counts %>% 
  cpm(., log = TRUE) %>% 
   as.data.frame() %>%
  rename_with(.,~gsub(pattern = "Ind1_75", replacement = "1_",.)) %>%
  rename_with(.,~gsub(pattern = "Ind2_87", replacement = "2_",.)) %>%
  rename_with(.,~gsub(pattern = "Ind3_77", replacement = "3_",.)) %>%
  rename_with(.,~gsub(pattern = "Ind6_71", replacement = "6_",.)) %>%
  rename_with(.,~gsub( "DX" ,'DOX',.)) %>%
  rename_with(.,~gsub( "DA" ,'DNR',.)) %>%
  rename_with(.,~gsub( "E" ,'EPI',.)) %>%
  rename_with(.,~gsub( "T" ,'TRZ',.)) %>%
  rename_with(.,~gsub( "M" ,'MTX',.)) %>%
  rename_with(.,~gsub( "V" ,'VEH',.)) %>%
  rename_with(.,~gsub("24h","_24h",.)) %>%
  rename_with(.,~gsub("3h","_3h",.)) %>% 
  dplyr::filter(row.names(.) %in% df_gene_schneider_ATAC$Peakid) %>% 
  mutate(Peakid = row.names(.)) %>% 
  pivot_longer(cols = !Peakid, names_to = "sample", values_to = "counts") %>% 
  left_join(., df_gene_schneider_ATAC, by =c("Peakid"="Peakid")) %>% 
  separate("sample", into = c("ind","trt","time")) %>% 
  mutate(time=factor(time, levels = c("3h","24h"))) %>% 
  mutate(trt=factor(trt, levels= c("DOX","EPI","DNR","MTX","TRZ","VEH"))) %>% 
  ggplot(., aes (x = time, y=counts))+
  geom_boxplot(aes(fill=trt))+
  facet_wrap(~Peakid+SYMBOL,scales="free_y")+
  ggtitle(" ATAC accessibility")+
  scale_fill_manual(values = drug_pal)+
  theme_bw()+
  ylab("log2 cpm ATAC")

#### ATAC-seq by peaks

hm_lfc_df <- SNP_peak_check_20k %>% 
  left_join(., Nine_te_df, by = c("Peakid"="Peakid") ) %>% 
  dplyr::filter(mrc != "NR") %>% 
  dplyr::filter(mrc !="not_mrc") %>%  
  mutate(dist_to_SNP=case_when(
    Peakid %in% schneider_short_list$Peakid &RSID %in% schneider_short_list$RSID~ 0,
    Peakid %in% schneider_10k_list$Peakid &RSID %in% schneider_10k_list$RSID~ 10,
    Peakid %in% schneider_20k_list$Peakid &RSID %in% schneider_20k_list$RSID~ 20,
     Peakid %in% schneider_50k_list$Peakid &RSID %in% schneider_50k_list$RSID ~ 50)) %>% 
    left_join(ATAC_LFC) %>% 
  tidyr::unite(name,Peakid,RSID,SYMBOL, sep = "_", remove = FALSE) %>% 
  group_by(Peakid, RSID) %>% 
   summarize(name=unique(name),
           med_3h_lfc=unique(med_3h_lfc),
           med_24h_lfc=unique(med_24h_lfc),
           # AC_3h_lfc=unique(AC_3h_lfc),
           # AC_24h_lfc=unique(AC_24h_lfc),
           # RNA_3h_lfc=unique(RNA_3h_lfc),
           # RNA_24h_lfc=unique(RNA_24h_lfc),
          repClass=paste(unique(repClass),collapse=":"),
           TEstatus=paste(unique(TEstatus),collapse=";"),
          SYMBOL=paste(unique(SYMBOL),collapse=";"),
           # reheat=paste(unique(reheat),collapse=";"),
          mrc=unique(mrc),
          dist_to_SNP=min(dist_to_SNP))  %>% 
  arrange(., Peakid)
  


hm_lfc_mat <-hm_lfc_df %>%
  dplyr::select(Peakid,RSID,  med_3h_lfc, med_24h_lfc) %>% 
  tidyr::unite(name, Peakid, RSID, sep = "_") %>% 
  column_to_rownames("name") %>% 
  as.matrix()

hm_name_mat <-hm_lfc_df %>% 
  dplyr::select (Peakid, RSID, TEstatus, mrc,dist_to_SNP) %>% 
   tidyr::unite(name, Peakid, RSID, sep = "_")  
  
row_anno_lfc <- ComplexHeatmap::rowAnnotation(
    TE_status=hm_name_mat$TEstatus,
    reheat_status=hm_name_mat$reheat,
    MRC=hm_name_mat$mrc,
    direct_overlap=hm_name_mat$dist_to_SNP,
    col= list(
    TE_status=c("TE_peak"="goldenrod",
                "not_TE_peak"="lightblue"),
    MRC = c("EAR_open" = "#F8766D",
            "EAR_close" = "#f6483c",
            "ESR_open" = "#7CAE00",
            "ESR_close" = "#587b00",
            "ESR_opcl"="grey40",
            "ESR_clop"="tan",
            "LR_open" = "#00BFC4",
            "LR_close" = "#008d91",
            "NR" = "#C77CFF",
            "not_mrc"="black"),   
    reheat_status=c("reheat_gene"="green",
                    "not_reheat_gene"="orange"),
    direct_overlap=c("0"="red",
                     "10"="pink",
                     "20"="tan2",
                     "50"="grey8")))

simply_map_lfc <- ComplexHeatmap::Heatmap(hm_lfc_mat,
                        left_annotation = row_anno_lfc,
                        show_row_names = TRUE,
                       row_names_max_width= max_text_width(rownames(hm_lfc_mat),                                                        gp=gpar(fontsize=16)),
                        heatmap_legend_param = list(direction = "horizontal"),
                        show_column_names = TRUE,
                        cluster_rows = FALSE,
                        cluster_columns = FALSE)

draw(simply_map_lfc, 
     merge_legend = TRUE, 
     heatmap_legend_side = "bottom", 
    annotation_legend_side = "bottom")

hm_lfc_df_50 <- SNP_peak_check_50k %>% 
  left_join(., Nine_te_df, by = c("Peakid"="Peakid") ) %>% 
  dplyr::filter(mrc != "NR") %>% 
  dplyr::filter(mrc !="not_mrc") %>%  
  mutate(dist_to_SNP=case_when(
    Peakid %in% schneider_short_list$Peakid &RSID %in% schneider_short_list$RSID~ 0,
    Peakid %in% schneider_10k_list$Peakid &RSID %in% schneider_10k_list$RSID~ 10,
    Peakid %in% schneider_20k_list$Peakid &RSID %in% schneider_20k_list$RSID~ 20,
     Peakid %in% schneider_50k_list$Peakid &RSID %in% schneider_50k_list$RSID ~ 50)) %>% 
    left_join(ATAC_LFC) %>% 
  tidyr::unite(name,Peakid,RSID,SYMBOL, sep = "_", remove = FALSE) %>% 
  group_by(Peakid, RSID) %>% 
   summarize(name=unique(name),
           med_3h_lfc=unique(med_3h_lfc),
           med_24h_lfc=unique(med_24h_lfc),
           # AC_3h_lfc=unique(AC_3h_lfc),
           # AC_24h_lfc=unique(AC_24h_lfc),
           # RNA_3h_lfc=unique(RNA_3h_lfc),
           # RNA_24h_lfc=unique(RNA_24h_lfc),
          repClass=paste(unique(repClass),collapse=":"),
           TEstatus=paste(unique(TEstatus),collapse=";"),
          SYMBOL=paste(unique(SYMBOL),collapse=";"),
           # reheat=paste(unique(reheat),collapse=";"),
          mrc=unique(mrc),
          dist_to_SNP=min(dist_to_SNP))  %>% 
  arrange(., Peakid)
  


hm_lfc_mat_50 <-hm_lfc_df_50 %>%
  dplyr::select(Peakid,RSID,  med_3h_lfc, med_24h_lfc) %>% 
  tidyr::unite(name, Peakid, RSID, sep = "_") %>% 
  column_to_rownames("name") %>% 
  as.matrix()

hm_name_mat_50 <-hm_lfc_df_50 %>% 
  dplyr::select (Peakid, RSID, TEstatus, mrc,dist_to_SNP) %>% 
   tidyr::unite(name, Peakid, RSID, sep = "_")  
  
row_anno_lfc_50 <- ComplexHeatmap::rowAnnotation(
    TE_status=hm_name_mat_50$TEstatus,
    reheat_status=hm_name_mat_50$reheat,
    MRC=hm_name_mat_50$mrc,
    direct_overlap=hm_name_mat_50$dist_to_SNP,
    col= list(
    TE_status=c("TE_peak"="goldenrod",
                "not_TE_peak"="lightblue"),
    MRC = c("EAR_open" = "#F8766D",
            "EAR_close" = "#f6483c",
            "ESR_open" = "#7CAE00",
            "ESR_close" = "#587b00",
            "ESR_opcl"="grey40",
            "ESR_clop"="tan",
            "LR_open" = "#00BFC4",
            "LR_close" = "#008d91",
            "NR" = "#C77CFF",
            "not_mrc"="black"),   
    reheat_status=c("reheat_gene"="green",
                    "not_reheat_gene"="orange"),
    direct_overlap=c("0"="red",
                     "10"="pink",
                     "20"="tan2",
                     "50"="grey8")))

simply_map_lfc_50 <- ComplexHeatmap::Heatmap(hm_lfc_mat_50,
                        left_annotation = row_anno_lfc_50,
                        show_row_names = TRUE,
                       row_names_max_width= max_text_width(rownames(hm_lfc_mat_50),                                                        gp=gpar(fontsize=16)),
                        heatmap_legend_param = list(direction = "horizontal"),
                        show_column_names = TRUE,
                        cluster_rows = FALSE,
                        cluster_columns = FALSE)

draw(simply_map_lfc_50, 
     merge_legend = TRUE, 
     heatmap_legend_side = "bottom", 
    annotation_legend_side = "bottom")

# SNP_peak_check_50k %>%
#   left_join(., Nine_te_df, by = c("Peakid"="Peakid") ) %>%
#   # dplyr::filter(mrc != "NR") %>%
#   dplyr::filter(mrc !="not_mrc") %>%
#   distinct(RSID)

sessionInfo()
R version 4.4.2 (2024-10-31 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 26100)

Matrix products: default


locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

time zone: America/Chicago
tzcode source: internal

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] readxl_1.4.3                            
 [2] smplot2_0.2.4                           
 [3] cowplot_1.1.3                           
 [4] ComplexHeatmap_2.22.0                   
 [5] ggrepel_0.9.6                           
 [6] plyranges_1.26.0                        
 [7] ggsignif_0.6.4                          
 [8] genomation_1.38.0                       
 [9] edgeR_4.4.1                             
[10] limma_3.62.1                            
[11] ggpubr_0.6.0                            
[12] BiocParallel_1.40.0                     
[13] ggVennDiagram_1.5.2                     
[14] scales_1.3.0                            
[15] VennDiagram_1.7.3                       
[16] futile.logger_1.4.3                     
[17] gridExtra_2.3                           
[18] ggfortify_0.4.17                        
[19] rtracklayer_1.66.0                      
[20] org.Hs.eg.db_3.20.0                     
[21] TxDb.Hsapiens.UCSC.hg38.knownGene_3.20.0
[22] GenomicFeatures_1.58.0                  
[23] AnnotationDbi_1.68.0                    
[24] Biobase_2.66.0                          
[25] GenomicRanges_1.58.0                    
[26] GenomeInfoDb_1.42.1                     
[27] IRanges_2.40.1                          
[28] S4Vectors_0.44.0                        
[29] BiocGenerics_0.52.0                     
[30] RColorBrewer_1.1-3                      
[31] broom_1.0.7                             
[32] kableExtra_1.4.0                        
[33] lubridate_1.9.4                         
[34] forcats_1.0.0                           
[35] stringr_1.5.1                           
[36] dplyr_1.1.4                             
[37] purrr_1.0.2                             
[38] readr_2.1.5                             
[39] tidyr_1.3.1                             
[40] tibble_3.2.1                            
[41] ggplot2_3.5.1                           
[42] tidyverse_2.0.0                         
[43] workflowr_1.7.1                         

loaded via a namespace (and not attached):
  [1] later_1.4.1                 BiocIO_1.16.0              
  [3] bitops_1.0-9                cellranger_1.1.0           
  [5] rpart_4.1.23                XML_3.99-0.17              
  [7] lifecycle_1.0.4             rstatix_0.7.2              
  [9] doParallel_1.0.17           rprojroot_2.0.4            
 [11] vroom_1.6.5                 processx_3.8.4             
 [13] lattice_0.22-6              backports_1.5.0            
 [15] magrittr_2.0.3              Hmisc_5.2-1                
 [17] sass_0.4.9                  rmarkdown_2.29             
 [19] jquerylib_0.1.4             yaml_2.3.10                
 [21] plotrix_3.8-4               httpuv_1.6.15              
 [23] DBI_1.2.3                   abind_1.4-8                
 [25] zlibbioc_1.52.0             RCurl_1.98-1.16            
 [27] nnet_7.3-19                 git2r_0.35.0               
 [29] circlize_0.4.16             GenomeInfoDbData_1.2.13    
 [31] svglite_2.1.3               codetools_0.2-20           
 [33] DelayedArray_0.32.0         xml2_1.3.6                 
 [35] tidyselect_1.2.1            shape_1.4.6.1              
 [37] farver_2.1.2                UCSC.utils_1.2.0           
 [39] base64enc_0.1-3             matrixStats_1.4.1          
 [41] GenomicAlignments_1.42.0    jsonlite_1.8.9             
 [43] GetoptLong_1.0.5            Formula_1.2-5              
 [45] iterators_1.0.14            systemfonts_1.1.0          
 [47] foreach_1.5.2               tools_4.4.2                
 [49] Rcpp_1.0.13-1               glue_1.8.0                 
 [51] SparseArray_1.6.0           xfun_0.49                  
 [53] MatrixGenerics_1.18.0       withr_3.0.2                
 [55] formatR_1.14                fastmap_1.2.0              
 [57] callr_3.7.6                 digest_0.6.37              
 [59] timechange_0.3.0            R6_2.5.1                   
 [61] seqPattern_1.38.0           colorspace_2.1-1           
 [63] RSQLite_2.3.9               generics_0.1.3             
 [65] data.table_1.16.4           htmlwidgets_1.6.4          
 [67] httr_1.4.7                  S4Arrays_1.6.0             
 [69] whisker_0.4.1               pkgconfig_2.0.3            
 [71] gtable_0.3.6                blob_1.2.4                 
 [73] impute_1.80.0               XVector_0.46.0             
 [75] htmltools_0.5.8.1           carData_3.0-5              
 [77] pwr_1.3-0                   clue_0.3-66                
 [79] png_0.1-8                   knitr_1.49                 
 [81] lambda.r_1.2.4              rstudioapi_0.17.1          
 [83] tzdb_0.4.0                  reshape2_1.4.4             
 [85] rjson_0.2.23                checkmate_2.3.2            
 [87] curl_6.0.1                  zoo_1.8-12                 
 [89] cachem_1.1.0                GlobalOptions_0.1.2        
 [91] KernSmooth_2.23-24          parallel_4.4.2             
 [93] foreign_0.8-87              restfulr_0.0.15            
 [95] pillar_1.10.0               vctrs_0.6.5                
 [97] promises_1.3.2              car_3.1-3                  
 [99] cluster_2.1.8               htmlTable_2.4.3            
[101] evaluate_1.0.1              magick_2.8.5               
[103] cli_3.6.3                   locfit_1.5-9.10            
[105] compiler_4.4.2              futile.options_1.0.1       
[107] Rsamtools_2.22.0            rlang_1.1.4                
[109] crayon_1.5.3                labeling_0.4.3             
[111] ps_1.8.1                    getPass_0.2-4              
[113] plyr_1.8.9                  fs_1.6.5                   
[115] stringi_1.8.4               viridisLite_0.4.2          
[117] gridBase_0.4-7              munsell_0.5.1              
[119] Biostrings_2.74.1           Matrix_1.7-1               
[121] BSgenome_1.74.0             patchwork_1.3.0            
[123] hms_1.1.3                   bit64_4.5.2                
[125] KEGGREST_1.46.0             statmod_1.5.0              
[127] SummarizedExperiment_1.36.0 memoise_2.0.1              
[129] bslib_0.8.0                 bit_4.5.0.1