Last updated: 2025-06-17

Checks: 7 0

Knit directory: ATAC_learning/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20231016) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 5e2ac5c. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/H3K27ac_integration_noM.Rmd
    Ignored:    data/ACresp_SNP_table.csv
    Ignored:    data/ARR_SNP_table.csv
    Ignored:    data/All_merged_peaks.tsv
    Ignored:    data/CAD_gwas_dataframe.RDS
    Ignored:    data/CTX_SNP_table.csv
    Ignored:    data/Collapsed_expressed_NG_peak_table.csv
    Ignored:    data/DEG_toplist_sep_n45.RDS
    Ignored:    data/FRiP_first_run.txt
    Ignored:    data/Final_four_data/
    Ignored:    data/Frip_1_reads.csv
    Ignored:    data/Frip_2_reads.csv
    Ignored:    data/Frip_3_reads.csv
    Ignored:    data/Frip_4_reads.csv
    Ignored:    data/Frip_5_reads.csv
    Ignored:    data/Frip_6_reads.csv
    Ignored:    data/GO_KEGG_analysis/
    Ignored:    data/HF_SNP_table.csv
    Ignored:    data/Ind1_75DA24h_dedup_peaks.csv
    Ignored:    data/Ind1_TSS_peaks.RDS
    Ignored:    data/Ind1_firstfragment_files.txt
    Ignored:    data/Ind1_fragment_files.txt
    Ignored:    data/Ind1_peaks_list.RDS
    Ignored:    data/Ind1_summary.txt
    Ignored:    data/Ind2_TSS_peaks.RDS
    Ignored:    data/Ind2_fragment_files.txt
    Ignored:    data/Ind2_peaks_list.RDS
    Ignored:    data/Ind2_summary.txt
    Ignored:    data/Ind3_TSS_peaks.RDS
    Ignored:    data/Ind3_fragment_files.txt
    Ignored:    data/Ind3_peaks_list.RDS
    Ignored:    data/Ind3_summary.txt
    Ignored:    data/Ind4_79B24h_dedup_peaks.csv
    Ignored:    data/Ind4_TSS_peaks.RDS
    Ignored:    data/Ind4_V24h_fraglength.txt
    Ignored:    data/Ind4_fragment_files.txt
    Ignored:    data/Ind4_fragment_filesN.txt
    Ignored:    data/Ind4_peaks_list.RDS
    Ignored:    data/Ind4_summary.txt
    Ignored:    data/Ind5_TSS_peaks.RDS
    Ignored:    data/Ind5_fragment_files.txt
    Ignored:    data/Ind5_fragment_filesN.txt
    Ignored:    data/Ind5_peaks_list.RDS
    Ignored:    data/Ind5_summary.txt
    Ignored:    data/Ind6_TSS_peaks.RDS
    Ignored:    data/Ind6_fragment_files.txt
    Ignored:    data/Ind6_peaks_list.RDS
    Ignored:    data/Ind6_summary.txt
    Ignored:    data/Knowles_4.RDS
    Ignored:    data/Knowles_5.RDS
    Ignored:    data/Knowles_6.RDS
    Ignored:    data/LiSiLTDNRe_TE_df.RDS
    Ignored:    data/MI_gwas.RDS
    Ignored:    data/SNP_GWAS_PEAK_MRC_id
    Ignored:    data/SNP_GWAS_PEAK_MRC_id.csv
    Ignored:    data/SNP_gene_cat_list.tsv
    Ignored:    data/SNP_supp_schneider.RDS
    Ignored:    data/TE_info/
    Ignored:    data/TFmapnames.RDS
    Ignored:    data/all_TSSE_scores.RDS
    Ignored:    data/all_four_filtered_counts.txt
    Ignored:    data/aln_run1_results.txt
    Ignored:    data/anno_ind1_DA24h.RDS
    Ignored:    data/anno_ind4_V24h.RDS
    Ignored:    data/annotated_gwas_SNPS.csv
    Ignored:    data/background_n45_he_peaks.RDS
    Ignored:    data/cardiac_muscle_FRIP.csv
    Ignored:    data/cardiomyocyte_FRIP.csv
    Ignored:    data/col_ng_peak.csv
    Ignored:    data/cormotif_full_4_run.RDS
    Ignored:    data/cormotif_full_4_run_he.RDS
    Ignored:    data/cormotif_full_6_run.RDS
    Ignored:    data/cormotif_full_6_run_he.RDS
    Ignored:    data/cormotif_probability_45_list.csv
    Ignored:    data/cormotif_probability_45_list_he.csv
    Ignored:    data/cormotif_probability_all_6_list.csv
    Ignored:    data/cormotif_probability_all_6_list_he.csv
    Ignored:    data/datasave.RDS
    Ignored:    data/embryo_heart_FRIP.csv
    Ignored:    data/enhancer_list_ENCFF126UHK.bed
    Ignored:    data/enhancerdata/
    Ignored:    data/filt_Peaks_efit2.RDS
    Ignored:    data/filt_Peaks_efit2_bl.RDS
    Ignored:    data/filt_Peaks_efit2_n45.RDS
    Ignored:    data/first_Peaksummarycounts.csv
    Ignored:    data/first_run_frag_counts.txt
    Ignored:    data/full_bedfiles/
    Ignored:    data/gene_ref.csv
    Ignored:    data/gwas_1_dataframe.RDS
    Ignored:    data/gwas_2_dataframe.RDS
    Ignored:    data/gwas_3_dataframe.RDS
    Ignored:    data/gwas_4_dataframe.RDS
    Ignored:    data/gwas_5_dataframe.RDS
    Ignored:    data/high_conf_peak_counts.csv
    Ignored:    data/high_conf_peak_counts.txt
    Ignored:    data/high_conf_peaks_bl_counts.txt
    Ignored:    data/high_conf_peaks_counts.txt
    Ignored:    data/hits_files/
    Ignored:    data/hyper_files/
    Ignored:    data/hypo_files/
    Ignored:    data/ind1_DA24hpeaks.RDS
    Ignored:    data/ind1_TSSE.RDS
    Ignored:    data/ind2_TSSE.RDS
    Ignored:    data/ind3_TSSE.RDS
    Ignored:    data/ind4_TSSE.RDS
    Ignored:    data/ind4_V24hpeaks.RDS
    Ignored:    data/ind5_TSSE.RDS
    Ignored:    data/ind6_TSSE.RDS
    Ignored:    data/initial_complete_stats_run1.txt
    Ignored:    data/left_ventricle_FRIP.csv
    Ignored:    data/median_24_lfc.RDS
    Ignored:    data/median_3_lfc.RDS
    Ignored:    data/mergedPeads.gff
    Ignored:    data/mergedPeaks.gff
    Ignored:    data/motif_list_full
    Ignored:    data/motif_list_n45
    Ignored:    data/motif_list_n45.RDS
    Ignored:    data/multiqc_fastqc_run1.txt
    Ignored:    data/multiqc_fastqc_run2.txt
    Ignored:    data/multiqc_genestat_run1.txt
    Ignored:    data/multiqc_genestat_run2.txt
    Ignored:    data/my_hc_filt_counts.RDS
    Ignored:    data/my_hc_filt_counts_n45.RDS
    Ignored:    data/n45_bedfiles/
    Ignored:    data/n45_files
    Ignored:    data/other_papers/
    Ignored:    data/peakAnnoList_1.RDS
    Ignored:    data/peakAnnoList_2.RDS
    Ignored:    data/peakAnnoList_24_full.RDS
    Ignored:    data/peakAnnoList_24_n45.RDS
    Ignored:    data/peakAnnoList_3.RDS
    Ignored:    data/peakAnnoList_3_full.RDS
    Ignored:    data/peakAnnoList_3_n45.RDS
    Ignored:    data/peakAnnoList_4.RDS
    Ignored:    data/peakAnnoList_5.RDS
    Ignored:    data/peakAnnoList_6.RDS
    Ignored:    data/peakAnnoList_Eight.RDS
    Ignored:    data/peakAnnoList_full_motif.RDS
    Ignored:    data/peakAnnoList_n45_motif.RDS
    Ignored:    data/siglist_full.RDS
    Ignored:    data/siglist_n45.RDS
    Ignored:    data/summarized_peaks_dataframe.txt
    Ignored:    data/summary_peakIDandReHeat.csv
    Ignored:    data/test.list.RDS
    Ignored:    data/testnames.txt
    Ignored:    data/toplist_6.RDS
    Ignored:    data/toplist_full.RDS
    Ignored:    data/toplist_full_DAR_6.RDS
    Ignored:    data/toplist_n45.RDS
    Ignored:    data/trimmed_seq_length.csv
    Ignored:    data/unclassified_full_set_peaks.RDS
    Ignored:    data/unclassified_n45_set_peaks.RDS
    Ignored:    data/xstreme/

Untracked files:
    Untracked:  RNA_seq_integration.Rmd
    Untracked:  Rplot.pdf
    Untracked:  Sig_meta
    Untracked:  analysis/.gitignore
    Untracked:  analysis/AC_shared_analysis.Rmd
    Untracked:  analysis/Cormotif_analysis_testing diff.Rmd
    Untracked:  analysis/Diagnosis-tmm.Rmd
    Untracked:  analysis/Enhancer_enrichment_ALL_DAR.Rmd
    Untracked:  analysis/Expressed_RNA_associations.Rmd
    Untracked:  analysis/GO_analysis_DAR.Rmd
    Untracked:  analysis/Jaspar_motif_DAR.Rmd
    Untracked:  analysis/LFC_corr.Rmd
    Untracked:  analysis/SNP_TAD_peaks.Rmd
    Untracked:  analysis/SVA.Rmd
    Untracked:  analysis/Tan2020.Rmd
    Untracked:  analysis/Top2B_analysis.Rmd
    Untracked:  analysis/making_master_peaks_list.Rmd
    Untracked:  analysis/my_hc_filt_counts.csv
    Untracked:  code/Concatenations_for_export.R
    Untracked:  code/IGV_snapshot_code.R
    Untracked:  code/LongDARlist.R
    Untracked:  code/just_for_Fun.R
    Untracked:  my_plot.pdf
    Untracked:  my_plot.png
    Untracked:  output/cormotif_probability_45_list.csv
    Untracked:  output/cormotif_probability_all_6_list.csv
    Untracked:  setup.RData

Unstaged changes:
    Modified:   ATAC_learning.Rproj
    Modified:   analysis/AF_HF_SNPs.Rmd
    Modified:   analysis/Cardiotox_SNPs.Rmd
    Modified:   analysis/Cormotif_analysis.Rmd
    Modified:   analysis/DEG_analysis.Rmd
    Modified:   analysis/H3K27ac_initial_QC.Rmd
    Modified:   analysis/Jaspar_motif.Rmd
    Modified:   analysis/Jaspar_motif_ff.Rmd
    Modified:   analysis/TE_analysis_norm.Rmd
    Modified:   analysis/final_four_analysis.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Enhancer_enrichment_DOX_DAR.Rmd) and HTML (docs/Enhancer_enrichment_DOX_DAR.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html eeaa3e6 reneeisnowhere 2025-06-09 Build site.
Rmd 7a30fff reneeisnowhere 2025-06-09 updateing enrichment test
html e105fcf reneeisnowhere 2025-06-06 Build site.
Rmd bcd95ae reneeisnowhere 2025-06-06 adding DAR analysis
html 2554021 reneeisnowhere 2025-06-06 Build site.
Rmd 31c168e reneeisnowhere 2025-06-06 adding DAR analysis

library(tidyverse)
library(kableExtra)
library(broom)
library(RColorBrewer)
library(ChIPseeker)
library("TxDb.Hsapiens.UCSC.hg38.knownGene")
library("org.Hs.eg.db")
library(rtracklayer)
library(edgeR)
library(ggfortify)
library(limma)
library(readr)
library(BiocGenerics)
library(gridExtra)
library(VennDiagram)
library(scales)
library(BiocParallel)
library(ggpubr)
library(devtools)
library(biomaRt)
library(eulerr)
library(smplot2)
library(genomation)
library(ggsignif)
library(plyranges)
library(ggrepel)
library(epitools)
library(circlize)
Collapsed_peaks <- read_delim("data/Final_four_data/collapsed_new_peaks.txt",
                              delim = "\t", 
                              escape_double = FALSE, 
                              trim_ws = TRUE)

toptable_results <- readRDS("data/Final_four_data/re_analysis/Toptable_results.RDS")
all_regions <- toptable_results$DOX_24$genes

Collapsed_peaks <- read_delim("data/Final_four_data/collapsed_new_peaks.txt",
                              delim = "\t", 
                              escape_double = FALSE, 
                              trim_ws = TRUE)

final_peaks <- Collapsed_peaks %>% 
  dplyr::filter(chr != "chrY") %>%
  dplyr::filter(Peakid %in% all_regions) %>% 
  GRanges()
all_results  <- toptable_results %>%
  imap(~ .x %>% tibble::rownames_to_column(var = "rowname") %>%
         mutate(source = .y)) %>%
  bind_rows()

my_dar_data <- all_results %>% 
  dplyr::filter(source=="DOX_3"|source=="DOX_24") %>% 
  dplyr::select(source,genes,logFC,adj.P.Val) %>% 
  pivot_wider(.,id_cols=genes,names_from = source, values_from = c(logFC, adj.P.Val))

Enhancers and Response clusters

First: obtained a list of cis Regulatory Elements from Encode Screen [(https://screen.encodeproject.org/#)]

cREs_HLV_46F <- genomation::readBed("data/enhancerdata/ENCFF867HAD_ENCFF152PBB_ENCFF352YYH_ENCFF252IVK.7group.bed")

Whole_peaks <- join_overlap_intersect(final_peaks, cREs_HLV_46F)

Whole_peaks %>% 
  as.data.frame() %>% 
  group_by(blockCount) %>% 
  tally() %>% 
  kable(., caption="Breakdown of peaks overlapping cREs") %>% 
  kable_paper("striped", full_width = TRUE) %>%
  kable_styling(full_width = FALSE, font_size = 14)
Breakdown of peaks overlapping cREs
blockCount n
CTCF-only,CTCF-bound 7161
DNase-H3K4me3 1239
DNase-H3K4me3,CTCF-bound 819
DNase-only 5502
Low-DNase 174148
PLS 13986
PLS,CTCF-bound 3703
dELS 11809
dELS,CTCF-bound 2542
pELS 16069
pELS,CTCF-bound 3572
keep_cRE_names <- c("CTCF-only,CTCF-bound" ,"PLS,CTCF-bound","PLS","dELS,CTCF-bound", "pELS","pELS,CTCF-bound","dELS")
is_cRE <- Whole_peaks %>% 
  as.data.frame() %>% 
  dplyr::filter(blockCount %in% keep_cRE_names) %>% 
  distinct(Peakid,blockCount) 

is_CTCF <- Whole_peaks %>% 
  as.data.frame() %>% 
  dplyr::filter(blockCount == "CTCF-only,CTCF-bound") %>% 
  distinct(Peakid,blockCount) 

is_dELS <- Whole_peaks %>% 
  as.data.frame() %>% 
  dplyr::filter(blockCount == "dELS,CTCF-bound"|blockCount == "dELS") %>% 
  distinct(Peakid,blockCount) 
is_pELS <- Whole_peaks %>% 
  as.data.frame() %>% 
  dplyr::filter(blockCount == "pELS,CTCF-bound"|blockCount == "pELS") %>% 
  distinct(Peakid,blockCount) 
is_PLS <- Whole_peaks %>% 
  as.data.frame() %>% 
  dplyr::filter(blockCount == "PLS,CTCF-bound"|blockCount == "PLS") %>% 
  distinct(Peakid,blockCount) 


CRE_summary <-final_peaks %>% 
  as.data.frame() %>% 
   mutate(cRE_status=if_else(Peakid %in% is_cRE$Peakid,"cRE_peak","not_cRE_peak")) %>% 
   mutate(CTCF_status=if_else(Peakid %in% is_CTCF$Peakid,"CTCF_peak","not_CTCF_peak")) %>% 
    mutate(dELS_status=if_else(Peakid %in% is_dELS$Peakid,"dELS_peak","not_dELS_peak")) %>% 
    mutate(pELS_status=if_else(Peakid %in% is_pELS$Peakid,"pELS_peak","not_pELS_peak")) %>% 
    mutate(PLS_status=if_else(Peakid %in% is_PLS$Peakid,"PLS_peak","not_PLS_peak")) %>% 
  dplyr::select(Peakid:PLS_status) %>% 
  left_join(.,my_dar_data,by=c("Peakid"="genes")) %>% 
  mutate(sig_3=if_else(adj.P.Val_DOX_3<0.05,"sig","not_sig"),
         sig_24=if_else(adj.P.Val_DOX_24<0.05,"sig","not_sig")) %>% 
  mutate(sig_3=factor(sig_3,levels=c("sig","not_sig")),
         sig_24=factor(sig_24,levels=c("sig","not_sig"))) %>% 
 mutate(sig_up_3 = case_when(
  adj.P.Val_DOX_3 < 0.05 & logFC_DOX_3 > 0 ~ "sig_up",
  TRUE ~ "not_sig_up"
)) %>% 
 mutate(sig_down_3 = case_when(
  adj.P.Val_DOX_3 < 0.05 & logFC_DOX_3 < 0 ~ "sig_down",
  TRUE ~ "not_sig_down"
)) %>% 
  mutate(sig_up_24 = case_when(
  adj.P.Val_DOX_24 < 0.05 & logFC_DOX_24 > 0 ~ "sig_up",
  TRUE ~ "not_sig_up"
)) %>% 
 mutate(sig_down_24 = case_when(
  adj.P.Val_DOX_24 < 0.05 & logFC_DOX_24 < 0 ~ "sig_down",
  TRUE ~ "not_sig_down"
)) %>% 
  mutate(sig_up_3=factor(sig_up_3,levels=c("sig_up","not_sig_up")),
         sig_down_3=factor(sig_down_3,levels=c("sig_down","not_sig_down")),
         sig_up_24=factor(sig_up_24,levels=c("sig_up","not_sig_up")),
         sig_down_24=factor(sig_down_24,levels=c("sig_down","not_sig_down"))) 
status_columns <- c("cRE_status", "CTCF_status","dELS_status", "pELS_status","PLS_status")
DOX_3_status_matrices <- map(status_columns, function(status_col) {
  # Extract prefix (e.g., "TE", "SINE") from column name like "TE_status"
  prefix <- sub("_status$", "", status_col)
  expected_rows <- c(paste0(prefix,"_peak"), paste0("not_", prefix,"_peak"))
  expected_cols <- c("sig", "not_sig")
  
  # Build matrix
  mat <- CRE_summary %>%
    group_by(across(all_of(status_col)), sig_3) %>%
    tally() %>%
    pivot_wider(
      names_from = sig_3,
      values_from = n,
      values_fill = list(n = 0)
    ) %>%
    column_to_rownames(var = status_col) %>%
    as.matrix()
  
  # Fill missing expected rows
  for (r in setdiff(expected_rows, rownames(mat))) {
    mat <- rbind(mat, setNames(rep(0, length(expected_cols)), expected_cols))
    rownames(mat)[nrow(mat)] <- r
  }

  # Fill missing expected columns
  for (c in setdiff(expected_cols, colnames(mat))) {
    mat <- cbind(mat, setNames(rep(0, nrow(mat)), c))
  }

  # Order
  mat <- mat[expected_rows, expected_cols, drop = FALSE]
})

# Set names so you can easily refer to each status
names(DOX_3_status_matrices) <- status_columns


odds_ratio_results_DOX_3 <- map(DOX_3_status_matrices, function(mat) {
  if (!all(dim(mat) == c(2, 2)) || any(!is.finite(mat)) || sum(mat) == 0 || any(rowSums(mat) == 0) || any(colSums(mat) == 0)) {
    return(NULL)
  }
  
  result <- epitools::oddsratio(mat, method = "wald")
  
  or <- result$measure[2, "estimate"]
  lower <- result$measure[2, "lower"]
  upper <- result$measure[2, "upper"]
  
  pval_chisq <- if("chi.square" %in% colnames(result$p.value) && nrow(result$p.value) >= 2) {
    result$p.value[2, "chi.square"]
  } else {
    NA_real_
  }
  
  list(
    odds_ratio = or,
    lower_ci = lower,
    upper_ci = upper,
    chi_sq_p = pval_chisq
  )
})
DOX_24_status_matrices <- map(status_columns, function(status_col) {
  # Extract prefix (e.g., "TE", "SINE") from column name like "TE_status"
  prefix <- sub("_status$", "", status_col)
  expected_rows <- c(paste0(prefix,"_peak"), paste0("not_", prefix,"_peak"))
  expected_cols <- c("sig", "not_sig")
  
  # Build matrix
  mat <- CRE_summary %>%
    group_by(across(all_of(status_col)), sig_24) %>%
    tally() %>%
    pivot_wider(
      names_from = sig_24,
      values_from = n,
      values_fill = list(n = 0)
    ) %>%
    column_to_rownames(var = status_col) %>%
    as.matrix()
  
  # Fill missing expected rows
  for (r in setdiff(expected_rows, rownames(mat))) {
    mat <- rbind(mat, setNames(rep(0, length(expected_cols)), expected_cols))
    rownames(mat)[nrow(mat)] <- r
  }

  # Fill missing expected columns
  for (c in setdiff(expected_cols, colnames(mat))) {
    mat <- cbind(mat, setNames(rep(0, nrow(mat)), c))
  }

  # Order
  mat <- mat[expected_rows, expected_cols, drop = FALSE]
})

# Set names so you can easily refer to each status
names(DOX_24_status_matrices) <- status_columns


odds_ratio_results_DOX_24 <- map(DOX_24_status_matrices, function(mat) {
  if (!all(dim(mat) == c(2, 2)) || any(!is.finite(mat)) || sum(mat) == 0 || any(rowSums(mat) == 0) || any(colSums(mat) == 0)) {
    return(NULL)
  }
  
  result <- epitools::oddsratio(mat, method = "wald")
  
  or <- result$measure[2, "estimate"]
  lower <- result$measure[2, "lower"]
  upper <- result$measure[2, "upper"]
  
  pval_chisq <- if("chi.square" %in% colnames(result$p.value) && nrow(result$p.value) >= 2) {
    result$p.value[2, "chi.square"]
  } else {
    NA_real_
  }
  
  list(
    odds_ratio = or,
    lower_ci = lower,
    upper_ci = upper,
    chi_sq_p = pval_chisq
  )
})

3 hour matrix

DOX_3_sigup_status_matrices <- map(status_columns, function(status_col) {
  # Extract prefix (e.g., "TE", "SINE") from column name like "TE_status"
  prefix <- sub("_status$", "", status_col)
  expected_rows <- c(paste0(prefix,"_peak"), paste0("not_", prefix,"_peak"))
  expected_cols <- c("sig_up", "not_sig_up")
  
  # Build matrix
  mat <- CRE_summary %>%
    group_by(across(all_of(status_col)), sig_up_3) %>%
    tally() %>%
    pivot_wider(
      names_from = sig_up_3,
      values_from = n,
      values_fill = list(n = 0)
    ) %>%
    column_to_rownames(var = status_col) %>%
    as.matrix()
  
  # Fill missing expected rows
  for (r in setdiff(expected_rows, rownames(mat))) {
    mat <- rbind(mat, setNames(rep(0, length(expected_cols)), expected_cols))
    rownames(mat)[nrow(mat)] <- r
  }

  # Fill missing expected columns
  for (c in setdiff(expected_cols, colnames(mat))) {
    mat <- cbind(mat, setNames(rep(0, nrow(mat)), c))
  }

  # Order
  mat <- mat[expected_rows, expected_cols, drop = FALSE]
})

# Set names so you can easily refer to each status
names(DOX_3_sigup_status_matrices) <- status_columns


odds_ratio_results_DOX_3_sigup <- map(DOX_3_sigup_status_matrices, function(mat) {
  if (!all(dim(mat) == c(2, 2)) || any(!is.finite(mat)) || sum(mat) == 0 || any(rowSums(mat) == 0) || any(colSums(mat) == 0)) {
    return(NULL)
  }
  
  result <- epitools::oddsratio(mat, method = "wald")
  
  or <- result$measure[2, "estimate"]
  lower <- result$measure[2, "lower"]
  upper <- result$measure[2, "upper"]
  
  pval_chisq <- if("chi.square" %in% colnames(result$p.value) && nrow(result$p.value) >= 2) {
    result$p.value[2, "chi.square"]
  } else {
    NA_real_
  }
  
  list(
    odds_ratio = or,
    lower_ci = lower,
    upper_ci = upper,
    chi_sq_p = pval_chisq
  )
})
DOX_3_sigdown_status_matrices <- map(status_columns, function(status_col) {
  # Extract prefix (e.g., "TE", "SINE") from column name like "TE_status"
  prefix <- sub("_status$", "", status_col)
  expected_rows <- c(paste0(prefix,"_peak"), paste0("not_", prefix,"_peak"))
  expected_cols <- c("sig_down", "not_sig_down")
  
  # Build matrix
  mat <- CRE_summary %>%
    group_by(across(all_of(status_col)), sig_down_3) %>%
    tally() %>%
    pivot_wider(
      names_from = sig_down_3,
      values_from = n,
      values_fill = list(n = 0)
    ) %>%
    column_to_rownames(var = status_col) %>%
    as.matrix()
  
  # Fill missing expected rows
  for (r in setdiff(expected_rows, rownames(mat))) {
    mat <- rbind(mat, setNames(rep(0, length(expected_cols)), expected_cols))
    rownames(mat)[nrow(mat)] <- r
  }

  # Fill missing expected columns
  for (c in setdiff(expected_cols, colnames(mat))) {
    mat <- cbind(mat, setNames(rep(0, nrow(mat)), c))
  }

  # Order
  mat <- mat[expected_rows, expected_cols, drop = FALSE]
})

# Set names so you can easily refer to each status
names(DOX_3_sigdown_status_matrices) <- status_columns


odds_ratio_results_DOX_3_sigdown <- map(DOX_3_sigdown_status_matrices, function(mat) {
  if (!all(dim(mat) == c(2, 2)) || any(!is.finite(mat)) || sum(mat) == 0 || any(rowSums(mat) == 0) || any(colSums(mat) == 0)) {
    return(NULL)
  }
  
  result <- epitools::oddsratio(mat, method = "wald")
  
  or <- result$measure[2, "estimate"]
  lower <- result$measure[2, "lower"]
  upper <- result$measure[2, "upper"]
  
  pval_chisq <- if("chi.square" %in% colnames(result$p.value) && nrow(result$p.value) >= 2) {
    result$p.value[2, "chi.square"]
  } else {
    NA_real_
  }
  
  list(
    odds_ratio = or,
    lower_ci = lower,
    upper_ci = upper,
    chi_sq_p = pval_chisq
  )
})

24 hour matrix

DOX_24_sigup_status_matrices <- map(status_columns, function(status_col) {
  # Extract prefix (e.g., "TE", "SINE") from column name like "TE_status"
  prefix <- sub("_status$", "", status_col)
  expected_rows <- c(paste0(prefix,"_peak"), paste0("not_", prefix,"_peak"))
  expected_cols <- c("sig_up", "not_sig_up")
  
  # Build matrix
  mat <- CRE_summary %>%
    group_by(across(all_of(status_col)), sig_up_24) %>%
    tally() %>%
    pivot_wider(
      names_from = sig_up_24,
      values_from = n,
      values_fill = list(n = 0)
    ) %>%
    column_to_rownames(var = status_col) %>%
    as.matrix()
  
  # Fill missing expected rows
  for (r in setdiff(expected_rows, rownames(mat))) {
    mat <- rbind(mat, setNames(rep(0, length(expected_cols)), expected_cols))
    rownames(mat)[nrow(mat)] <- r
  }

  # Fill missing expected columns
  for (c in setdiff(expected_cols, colnames(mat))) {
    mat <- cbind(mat, setNames(rep(0, nrow(mat)), c))
  }

  # Order
  mat <- mat[expected_rows, expected_cols, drop = FALSE]
})

# Set names so you can easily refer to each status
names(DOX_24_sigup_status_matrices) <- status_columns


odds_ratio_results_DOX_24_sigup <- map(DOX_24_sigup_status_matrices, function(mat) {
  if (!all(dim(mat) == c(2, 2)) || any(!is.finite(mat)) || sum(mat) == 0 || any(rowSums(mat) == 0) || any(colSums(mat) == 0)) {
    return(NULL)
  }
  
  result <- epitools::oddsratio(mat, method = "wald")
  
  or <- result$measure[2, "estimate"]
  lower <- result$measure[2, "lower"]
  upper <- result$measure[2, "upper"]
  
  pval_chisq <- if("chi.square" %in% colnames(result$p.value) && nrow(result$p.value) >= 2) {
    result$p.value[2, "chi.square"]
  } else {
    NA_real_
  }
  
  list(
    odds_ratio = or,
    lower_ci = lower,
    upper_ci = upper,
    chi_sq_p = pval_chisq
  )
})
DOX_24_sigdown_status_matrices <- map(status_columns, function(status_col) {
  # Extract prefix (e.g., "TE", "SINE") from column name like "TE_status"
  prefix <- sub("_status$", "", status_col)
  expected_rows <- c(paste0(prefix,"_peak"), paste0("not_", prefix,"_peak"))
  expected_cols <- c("sig_down", "not_sig_down")
  
  # Build matrix
  mat <- CRE_summary %>%
    group_by(across(all_of(status_col)), sig_down_24) %>%
    tally() %>%
    pivot_wider(
      names_from = sig_down_24,
      values_from = n,
      values_fill = list(n = 0)
    ) %>%
    column_to_rownames(var = status_col) %>%
    as.matrix()
  
  # Fill missing expected rows
  for (r in setdiff(expected_rows, rownames(mat))) {
    mat <- rbind(mat, setNames(rep(0, length(expected_cols)), expected_cols))
    rownames(mat)[nrow(mat)] <- r
  }

  # Fill missing expected columns
  for (c in setdiff(expected_cols, colnames(mat))) {
    mat <- cbind(mat, setNames(rep(0, nrow(mat)), c))
  }

  # Order
  mat <- mat[expected_rows, expected_cols, drop = FALSE]
})

# Set names so you can easily refer to each status
names(DOX_24_sigdown_status_matrices) <- status_columns


odds_ratio_results_DOX_24_sigdown <- map(DOX_24_sigdown_status_matrices, function(mat) {
  if (!all(dim(mat) == c(2, 2)) || any(!is.finite(mat)) || sum(mat) == 0 || any(rowSums(mat) == 0) || any(colSums(mat) == 0)) {
    return(NULL)
  }
  
  result <- epitools::oddsratio(mat, method = "wald")
  
  or <- result$measure[2, "estimate"]
  lower <- result$measure[2, "lower"]
  upper <- result$measure[2, "upper"]
  
  pval_chisq <- if("chi.square" %in% colnames(result$p.value) && nrow(result$p.value) >= 2) {
    result$p.value[2, "chi.square"]
  } else {
    NA_real_
  }
  
  list(
    odds_ratio = or,
    lower_ci = lower,
    upper_ci = upper,
    chi_sq_p = pval_chisq
  )
})

odds ratio results

col_fun_OR = colorRamp2(c(0,1,1.5,5), c("blueviolet","white","lightgreen","green3" ))

combined_df <- bind_rows(
  map_dfr(odds_ratio_results_DOX_3, ~as.data.frame(.x), .id = "status") %>% mutate(source = "DOX_3hr"),
  map_dfr(odds_ratio_results_DOX_24, ~as.data.frame(.x), .id = "status") %>% mutate(source = "DOX_24hr"),
  map_dfr(odds_ratio_results_DOX_3_sigup, ~as.data.frame(.x), .id = "status") %>% mutate(source = "DOX_3hr_sigup"),
  map_dfr(odds_ratio_results_DOX_3_sigdown, ~as.data.frame(.x), .id = "status") %>% mutate(source = "DOX_3hr_sigdown"),
  map_dfr(odds_ratio_results_DOX_24_sigup, ~as.data.frame(.x), .id = "status") %>% mutate(source = "DOX_24hr_sigup"),
  map_dfr(odds_ratio_results_DOX_24_sigdown, ~as.data.frame(.x), .id = "status") %>% mutate(source = "DOX_24hr_sigdown")
)

sig_mat_OR <-combined_df %>% 
  dplyr::select( status,source,chi_sq_p) %>%
  group_by(source) %>%
  mutate(rank_val=rank(chi_sq_p, ties.method = "first")) %>%
  mutate(BH_correction= p.adjust(chi_sq_p,method= "BH")) %>% 
  pivot_wider(., id_cols = status, names_from = source, values_from = BH_correction) %>% 
  column_to_rownames("status") %>% 
  as.matrix()
combined_df
        status odds_ratio  lower_ci  upper_ci      chi_sq_p           source
1   cRE_status  1.8186681 1.6917152 1.9551481  1.198370e-60          DOX_3hr
2  CTCF_status  0.5596008 0.4532787 0.6908620  4.365469e-08          DOX_3hr
3  dELS_status  2.9470047 2.6903132 3.2281879 6.402191e-131          DOX_3hr
4  pELS_status  1.3748517 1.2238218 1.5445200  7.283218e-08          DOX_3hr
5   PLS_status  1.1125600 0.9865355 1.2546835  8.190022e-02          DOX_3hr
6   cRE_status  0.8144925 0.7942718 0.8352279  1.050122e-57         DOX_24hr
7  CTCF_status  0.5357704 0.5080652 0.5649863 8.539290e-121         DOX_24hr
8  dELS_status  1.5176826 1.4583578 1.5794206  1.562239e-94         DOX_24hr
9  pELS_status  0.6732629 0.6459938 0.7016831  2.677836e-79         DOX_24hr
10  PLS_status  0.5785605 0.5557696 0.6022861 4.655572e-160         DOX_24hr
11  cRE_status  1.5071547 1.3304573 1.7073192  8.467935e-11    DOX_3hr_sigup
12 CTCF_status  0.2433161 0.1435930 0.4122955  1.194909e-08    DOX_3hr_sigup
13 dELS_status  0.9207514 0.7293961 1.1623083  4.871786e-01    DOX_3hr_sigup
14 pELS_status  2.1454957 1.8218336 2.5266589  7.215422e-21    DOX_3hr_sigup
15  PLS_status  2.7856102 2.4118175 3.2173346  6.461880e-48    DOX_3hr_sigup
16  cRE_status  1.9857646 1.8181482 2.1688336  1.997431e-54  DOX_3hr_sigdown
17 CTCF_status  0.7420472 0.5895826 0.9339387  1.071810e-02  DOX_3hr_sigdown
18 dELS_status  4.2717044 3.8620543 4.7248064 9.887669e-207  DOX_3hr_sigdown
19 pELS_status  0.9761253 0.8273851 1.1516049  7.745052e-01  DOX_3hr_sigdown
20  PLS_status  0.3547971 0.2775382 0.4535629  5.495686e-18  DOX_3hr_sigdown
21  cRE_status  0.2831030 0.2715728 0.2951227  0.000000e+00   DOX_24hr_sigup
22 CTCF_status  0.1716907 0.1532935 0.1922958 7.125475e-260   DOX_24hr_sigup
23 dELS_status  0.5437895 0.5128126 0.5766377  1.076716e-94   DOX_24hr_sigup
24 pELS_status  0.2689604 0.2496058 0.2898159 5.597767e-297   DOX_24hr_sigup
25  PLS_status  0.1841673 0.1695725 0.2000182  0.000000e+00   DOX_24hr_sigup
26  cRE_status  1.8429476 1.7922702 1.8950578  0.000000e+00 DOX_24hr_sigdown
27 CTCF_status  1.1926048 1.1270257 1.2619998  9.891974e-10 DOX_24hr_sigdown
28 dELS_status  2.5678360 2.4631451 2.6769765  0.000000e+00 DOX_24hr_sigdown
29 pELS_status  1.3751395 1.3149478 1.4380865  1.563802e-44 DOX_24hr_sigdown
30  PLS_status  1.3054254 1.2504617 1.3628051  4.268412e-34 DOX_24hr_sigdown
combined_df %>% 
 dplyr::select(status, source, odds_ratio) %>%
  mutate(status=factor(status, levels=c("cRE_status","PLS_status","pELS_status","dELS_status","CTCF_status"))) %>% 
  arrange(status) %>% 
  group_by(source) %>%
  pivot_wider(., id_cols = status, names_from = source, values_from = odds_ratio) %>% 
  column_to_rownames("status") %>% 
  
  as.matrix() %>% 
  ComplexHeatmap::Heatmap(. ,col = col_fun_OR, 
                          cluster_rows=FALSE, 
                          cluster_columns=FALSE, 
                          column_names_side = "top", 
                          column_names_rot = 45,
                          # na_col = "black",
                          cell_fun = function(j, i, x, y, width, height, fill) {if (!is.na(sig_mat_OR[i, j]) && sig_mat_OR[i, j] < 0.05  && .[i, j] > 1) {
            grid.text("*", x, y, gp = gpar(fontsize = 20))}})

Version Author Date
eeaa3e6 reneeisnowhere 2025-06-09
2554021 reneeisnowhere 2025-06-06

note, this is corrected for multiple testing across categories within each DOX-DAR column.


sessionInfo()
R version 4.4.2 (2024-10-31 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 26100)

Matrix products: default


locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

time zone: America/Chicago
tzcode source: internal

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] circlize_0.4.16                         
 [2] epitools_0.5-10.1                       
 [3] ggrepel_0.9.6                           
 [4] plyranges_1.26.0                        
 [5] ggsignif_0.6.4                          
 [6] genomation_1.38.0                       
 [7] smplot2_0.2.5                           
 [8] eulerr_7.0.2                            
 [9] biomaRt_2.62.1                          
[10] devtools_2.4.5                          
[11] usethis_3.1.0                           
[12] ggpubr_0.6.0                            
[13] BiocParallel_1.40.0                     
[14] scales_1.3.0                            
[15] VennDiagram_1.7.3                       
[16] futile.logger_1.4.3                     
[17] gridExtra_2.3                           
[18] ggfortify_0.4.17                        
[19] edgeR_4.4.2                             
[20] limma_3.62.2                            
[21] rtracklayer_1.66.0                      
[22] org.Hs.eg.db_3.20.0                     
[23] TxDb.Hsapiens.UCSC.hg38.knownGene_3.20.0
[24] GenomicFeatures_1.58.0                  
[25] AnnotationDbi_1.68.0                    
[26] Biobase_2.66.0                          
[27] GenomicRanges_1.58.0                    
[28] GenomeInfoDb_1.42.3                     
[29] IRanges_2.40.1                          
[30] S4Vectors_0.44.0                        
[31] BiocGenerics_0.52.0                     
[32] ChIPseeker_1.42.1                       
[33] RColorBrewer_1.1-3                      
[34] broom_1.0.7                             
[35] kableExtra_1.4.0                        
[36] lubridate_1.9.4                         
[37] forcats_1.0.0                           
[38] stringr_1.5.1                           
[39] dplyr_1.1.4                             
[40] purrr_1.0.4                             
[41] readr_2.1.5                             
[42] tidyr_1.3.1                             
[43] tibble_3.2.1                            
[44] ggplot2_3.5.1                           
[45] tidyverse_2.0.0                         
[46] workflowr_1.7.1                         

loaded via a namespace (and not attached):
  [1] fs_1.6.5                               
  [2] matrixStats_1.5.0                      
  [3] bitops_1.0-9                           
  [4] enrichplot_1.26.6                      
  [5] doParallel_1.0.17                      
  [6] httr_1.4.7                             
  [7] profvis_0.4.0                          
  [8] tools_4.4.2                            
  [9] backports_1.5.0                        
 [10] R6_2.6.1                               
 [11] lazyeval_0.2.2                         
 [12] GetoptLong_1.0.5                       
 [13] urlchecker_1.0.1                       
 [14] withr_3.0.2                            
 [15] prettyunits_1.2.0                      
 [16] cli_3.6.4                              
 [17] formatR_1.14                           
 [18] Cairo_1.6-2                            
 [19] sass_0.4.9                             
 [20] Rsamtools_2.22.0                       
 [21] systemfonts_1.2.1                      
 [22] yulab.utils_0.2.0                      
 [23] foreign_0.8-88                         
 [24] DOSE_4.0.1                             
 [25] svglite_2.1.3                          
 [26] R.utils_2.13.0                         
 [27] sessioninfo_1.2.3                      
 [28] plotrix_3.8-4                          
 [29] BSgenome_1.74.0                        
 [30] pwr_1.3-0                              
 [31] impute_1.80.0                          
 [32] rstudioapi_0.17.1                      
 [33] RSQLite_2.3.9                          
 [34] shape_1.4.6.1                          
 [35] generics_0.1.4                         
 [36] gridGraphics_0.5-1                     
 [37] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
 [38] BiocIO_1.16.0                          
 [39] vroom_1.6.5                            
 [40] gtools_3.9.5                           
 [41] car_3.1-3                              
 [42] GO.db_3.20.0                           
 [43] Matrix_1.7-3                           
 [44] abind_1.4-8                            
 [45] R.methodsS3_1.8.2                      
 [46] lifecycle_1.0.4                        
 [47] whisker_0.4.1                          
 [48] yaml_2.3.10                            
 [49] carData_3.0-5                          
 [50] SummarizedExperiment_1.36.0            
 [51] gplots_3.2.0                           
 [52] qvalue_2.38.0                          
 [53] SparseArray_1.6.2                      
 [54] BiocFileCache_2.14.0                   
 [55] blob_1.2.4                             
 [56] promises_1.3.2                         
 [57] crayon_1.5.3                           
 [58] miniUI_0.1.2                           
 [59] ggtangle_0.0.6                         
 [60] lattice_0.22-6                         
 [61] cowplot_1.1.3                          
 [62] KEGGREST_1.46.0                        
 [63] magick_2.8.7                           
 [64] ComplexHeatmap_2.22.0                  
 [65] pillar_1.10.2                          
 [66] knitr_1.50                             
 [67] fgsea_1.32.2                           
 [68] rjson_0.2.23                           
 [69] boot_1.3-31                            
 [70] codetools_0.2-20                       
 [71] fastmatch_1.1-6                        
 [72] glue_1.8.0                             
 [73] getPass_0.2-4                          
 [74] ggfun_0.1.8                            
 [75] data.table_1.17.0                      
 [76] remotes_2.5.0                          
 [77] vctrs_0.6.5                            
 [78] png_0.1-8                              
 [79] treeio_1.30.0                          
 [80] gtable_0.3.6                           
 [81] cachem_1.1.0                           
 [82] xfun_0.51                              
 [83] S4Arrays_1.6.0                         
 [84] mime_0.12                              
 [85] iterators_1.0.14                       
 [86] statmod_1.5.0                          
 [87] ellipsis_0.3.2                         
 [88] nlme_3.1-167                           
 [89] ggtree_3.14.0                          
 [90] bit64_4.6.0-1                          
 [91] filelock_1.0.3                         
 [92] progress_1.2.3                         
 [93] rprojroot_2.0.4                        
 [94] bslib_0.9.0                            
 [95] rpart_4.1.24                           
 [96] KernSmooth_2.23-26                     
 [97] Hmisc_5.2-2                            
 [98] colorspace_2.1-1                       
 [99] DBI_1.2.3                              
[100] seqPattern_1.38.0                      
[101] nnet_7.3-20                            
[102] tidyselect_1.2.1                       
[103] processx_3.8.6                         
[104] bit_4.6.0                              
[105] compiler_4.4.2                         
[106] curl_6.2.1                             
[107] git2r_0.35.0                           
[108] httr2_1.1.2                            
[109] htmlTable_2.4.3                        
[110] xml2_1.3.7                             
[111] DelayedArray_0.32.0                    
[112] checkmate_2.3.2                        
[113] caTools_1.18.3                         
[114] callr_3.7.6                            
[115] rappdirs_0.3.3                         
[116] digest_0.6.37                          
[117] rmarkdown_2.29                         
[118] XVector_0.46.0                         
[119] base64enc_0.1-3                        
[120] htmltools_0.5.8.1                      
[121] pkgconfig_2.0.3                        
[122] MatrixGenerics_1.18.1                  
[123] dbplyr_2.5.0                           
[124] fastmap_1.2.0                          
[125] GlobalOptions_0.1.2                    
[126] rlang_1.1.5                            
[127] htmlwidgets_1.6.4                      
[128] UCSC.utils_1.2.0                       
[129] shiny_1.10.0                           
[130] farver_2.1.2                           
[131] jquerylib_0.1.4                        
[132] zoo_1.8-13                             
[133] jsonlite_1.9.1                         
[134] GOSemSim_2.32.0                        
[135] R.oo_1.27.1                            
[136] RCurl_1.98-1.16                        
[137] magrittr_2.0.3                         
[138] Formula_1.2-5                          
[139] GenomeInfoDbData_1.2.13                
[140] ggplotify_0.1.2                        
[141] patchwork_1.3.0                        
[142] munsell_0.5.1                          
[143] Rcpp_1.0.14                            
[144] ape_5.8-1                              
[145] stringi_1.8.4                          
[146] zlibbioc_1.52.0                        
[147] plyr_1.8.9                             
[148] pkgbuild_1.4.8                         
[149] parallel_4.4.2                         
[150] Biostrings_2.74.1                      
[151] splines_4.4.2                          
[152] hms_1.1.3                              
[153] locfit_1.5-9.12                        
[154] ps_1.9.0                               
[155] igraph_2.1.4                           
[156] reshape2_1.4.4                         
[157] pkgload_1.4.0                          
[158] futile.options_1.0.1                   
[159] XML_3.99-0.18                          
[160] evaluate_1.0.3                         
[161] lambda.r_1.2.4                         
[162] foreach_1.5.2                          
[163] tzdb_0.4.0                             
[164] httpuv_1.6.15                          
[165] clue_0.3-66                            
[166] gridBase_0.4-7                         
[167] xtable_1.8-4                           
[168] restfulr_0.0.15                        
[169] tidytree_0.4.6                         
[170] rstatix_0.7.2                          
[171] later_1.4.1                            
[172] viridisLite_0.4.2                      
[173] aplot_0.2.6                            
[174] memoise_2.0.1                          
[175] GenomicAlignments_1.42.0               
[176] cluster_2.1.8.1                        
[177] timechange_0.3.0