Last updated: 2025-08-05

Checks: 7 0

Knit directory: ATAC_learning/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20231016) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 429a742. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/H3K27ac_integration_noM.Rmd
    Ignored:    data/ACresp_SNP_table.csv
    Ignored:    data/ARR_SNP_table.csv
    Ignored:    data/All_merged_peaks.tsv
    Ignored:    data/CAD_gwas_dataframe.RDS
    Ignored:    data/CTX_SNP_table.csv
    Ignored:    data/Collapsed_expressed_NG_peak_table.csv
    Ignored:    data/DEG_toplist_sep_n45.RDS
    Ignored:    data/FRiP_first_run.txt
    Ignored:    data/Final_four_data/
    Ignored:    data/Frip_1_reads.csv
    Ignored:    data/Frip_2_reads.csv
    Ignored:    data/Frip_3_reads.csv
    Ignored:    data/Frip_4_reads.csv
    Ignored:    data/Frip_5_reads.csv
    Ignored:    data/Frip_6_reads.csv
    Ignored:    data/GO_KEGG_analysis/
    Ignored:    data/HF_SNP_table.csv
    Ignored:    data/Ind1_75DA24h_dedup_peaks.csv
    Ignored:    data/Ind1_TSS_peaks.RDS
    Ignored:    data/Ind1_firstfragment_files.txt
    Ignored:    data/Ind1_fragment_files.txt
    Ignored:    data/Ind1_peaks_list.RDS
    Ignored:    data/Ind1_summary.txt
    Ignored:    data/Ind2_TSS_peaks.RDS
    Ignored:    data/Ind2_fragment_files.txt
    Ignored:    data/Ind2_peaks_list.RDS
    Ignored:    data/Ind2_summary.txt
    Ignored:    data/Ind3_TSS_peaks.RDS
    Ignored:    data/Ind3_fragment_files.txt
    Ignored:    data/Ind3_peaks_list.RDS
    Ignored:    data/Ind3_summary.txt
    Ignored:    data/Ind4_79B24h_dedup_peaks.csv
    Ignored:    data/Ind4_TSS_peaks.RDS
    Ignored:    data/Ind4_V24h_fraglength.txt
    Ignored:    data/Ind4_fragment_files.txt
    Ignored:    data/Ind4_fragment_filesN.txt
    Ignored:    data/Ind4_peaks_list.RDS
    Ignored:    data/Ind4_summary.txt
    Ignored:    data/Ind5_TSS_peaks.RDS
    Ignored:    data/Ind5_fragment_files.txt
    Ignored:    data/Ind5_fragment_filesN.txt
    Ignored:    data/Ind5_peaks_list.RDS
    Ignored:    data/Ind5_summary.txt
    Ignored:    data/Ind6_TSS_peaks.RDS
    Ignored:    data/Ind6_fragment_files.txt
    Ignored:    data/Ind6_peaks_list.RDS
    Ignored:    data/Ind6_summary.txt
    Ignored:    data/Knowles_4.RDS
    Ignored:    data/Knowles_5.RDS
    Ignored:    data/Knowles_6.RDS
    Ignored:    data/LiSiLTDNRe_TE_df.RDS
    Ignored:    data/MI_gwas.RDS
    Ignored:    data/SNP_GWAS_PEAK_MRC_id
    Ignored:    data/SNP_GWAS_PEAK_MRC_id.csv
    Ignored:    data/SNP_gene_cat_list.tsv
    Ignored:    data/SNP_supp_schneider.RDS
    Ignored:    data/TE_info/
    Ignored:    data/TFmapnames.RDS
    Ignored:    data/all_TSSE_scores.RDS
    Ignored:    data/all_four_filtered_counts.txt
    Ignored:    data/aln_run1_results.txt
    Ignored:    data/anno_ind1_DA24h.RDS
    Ignored:    data/anno_ind4_V24h.RDS
    Ignored:    data/annotated_gwas_SNPS.csv
    Ignored:    data/background_n45_he_peaks.RDS
    Ignored:    data/cardiac_muscle_FRIP.csv
    Ignored:    data/cardiomyocyte_FRIP.csv
    Ignored:    data/col_ng_peak.csv
    Ignored:    data/cormotif_full_4_run.RDS
    Ignored:    data/cormotif_full_4_run_he.RDS
    Ignored:    data/cormotif_full_6_run.RDS
    Ignored:    data/cormotif_full_6_run_he.RDS
    Ignored:    data/cormotif_probability_45_list.csv
    Ignored:    data/cormotif_probability_45_list_he.csv
    Ignored:    data/cormotif_probability_all_6_list.csv
    Ignored:    data/cormotif_probability_all_6_list_he.csv
    Ignored:    data/datasave.RDS
    Ignored:    data/embryo_heart_FRIP.csv
    Ignored:    data/enhancer_list_ENCFF126UHK.bed
    Ignored:    data/enhancerdata/
    Ignored:    data/filt_Peaks_efit2.RDS
    Ignored:    data/filt_Peaks_efit2_bl.RDS
    Ignored:    data/filt_Peaks_efit2_n45.RDS
    Ignored:    data/first_Peaksummarycounts.csv
    Ignored:    data/first_run_frag_counts.txt
    Ignored:    data/full_bedfiles/
    Ignored:    data/gene_ref.csv
    Ignored:    data/gwas_1_dataframe.RDS
    Ignored:    data/gwas_2_dataframe.RDS
    Ignored:    data/gwas_3_dataframe.RDS
    Ignored:    data/gwas_4_dataframe.RDS
    Ignored:    data/gwas_5_dataframe.RDS
    Ignored:    data/high_conf_peak_counts.csv
    Ignored:    data/high_conf_peak_counts.txt
    Ignored:    data/high_conf_peaks_bl_counts.txt
    Ignored:    data/high_conf_peaks_counts.txt
    Ignored:    data/hits_files/
    Ignored:    data/hyper_files/
    Ignored:    data/hypo_files/
    Ignored:    data/ind1_DA24hpeaks.RDS
    Ignored:    data/ind1_TSSE.RDS
    Ignored:    data/ind2_TSSE.RDS
    Ignored:    data/ind3_TSSE.RDS
    Ignored:    data/ind4_TSSE.RDS
    Ignored:    data/ind4_V24hpeaks.RDS
    Ignored:    data/ind5_TSSE.RDS
    Ignored:    data/ind6_TSSE.RDS
    Ignored:    data/initial_complete_stats_run1.txt
    Ignored:    data/left_ventricle_FRIP.csv
    Ignored:    data/median_24_lfc.RDS
    Ignored:    data/median_3_lfc.RDS
    Ignored:    data/mergedPeads.gff
    Ignored:    data/mergedPeaks.gff
    Ignored:    data/motif_list_full
    Ignored:    data/motif_list_n45
    Ignored:    data/motif_list_n45.RDS
    Ignored:    data/multiqc_fastqc_run1.txt
    Ignored:    data/multiqc_fastqc_run2.txt
    Ignored:    data/multiqc_genestat_run1.txt
    Ignored:    data/multiqc_genestat_run2.txt
    Ignored:    data/my_hc_filt_counts.RDS
    Ignored:    data/my_hc_filt_counts_n45.RDS
    Ignored:    data/n45_bedfiles/
    Ignored:    data/n45_files
    Ignored:    data/other_papers/
    Ignored:    data/peakAnnoList_1.RDS
    Ignored:    data/peakAnnoList_2.RDS
    Ignored:    data/peakAnnoList_24_full.RDS
    Ignored:    data/peakAnnoList_24_n45.RDS
    Ignored:    data/peakAnnoList_3.RDS
    Ignored:    data/peakAnnoList_3_full.RDS
    Ignored:    data/peakAnnoList_3_n45.RDS
    Ignored:    data/peakAnnoList_4.RDS
    Ignored:    data/peakAnnoList_5.RDS
    Ignored:    data/peakAnnoList_6.RDS
    Ignored:    data/peakAnnoList_Eight.RDS
    Ignored:    data/peakAnnoList_full_motif.RDS
    Ignored:    data/peakAnnoList_n45_motif.RDS
    Ignored:    data/siglist_full.RDS
    Ignored:    data/siglist_n45.RDS
    Ignored:    data/summarized_peaks_dataframe.txt
    Ignored:    data/summary_peakIDandReHeat.csv
    Ignored:    data/test.list.RDS
    Ignored:    data/testnames.txt
    Ignored:    data/toplist_6.RDS
    Ignored:    data/toplist_full.RDS
    Ignored:    data/toplist_full_DAR_6.RDS
    Ignored:    data/toplist_n45.RDS
    Ignored:    data/trimmed_seq_length.csv
    Ignored:    data/unclassified_full_set_peaks.RDS
    Ignored:    data/unclassified_n45_set_peaks.RDS
    Ignored:    data/xstreme/

Untracked files:
    Untracked:  RNA_seq_integration.Rmd
    Untracked:  Rplot.pdf
    Untracked:  Sig_meta
    Untracked:  analysis/.gitignore
    Untracked:  analysis/Cormotif_analysis_testing diff.Rmd
    Untracked:  analysis/Diagnosis-tmm.Rmd
    Untracked:  analysis/Expressed_RNA_associations.Rmd
    Untracked:  analysis/IF_counts_20x.Rmd
    Untracked:  analysis/Jaspar_motif_DAR_paper.Rmd
    Untracked:  analysis/LFC_corr.Rmd
    Untracked:  analysis/SVA.Rmd
    Untracked:  analysis/Tan2020.Rmd
    Untracked:  analysis/making_master_peaks_list.Rmd
    Untracked:  analysis/my_hc_filt_counts.csv
    Untracked:  code/Concatenations_for_export.R
    Untracked:  code/IGV_snapshot_code.R
    Untracked:  code/LongDARlist.R
    Untracked:  code/just_for_Fun.R
    Untracked:  my_plot.pdf
    Untracked:  my_plot.png
    Untracked:  output/cormotif_probability_45_list.csv
    Untracked:  output/cormotif_probability_all_6_list.csv
    Untracked:  setup.RData

Unstaged changes:
    Modified:   ATAC_learning.Rproj
    Modified:   analysis/AC_shared_analysis.Rmd
    Modified:   analysis/AF_HF_SNPs.Rmd
    Modified:   analysis/Cardiotox_SNPs.Rmd
    Modified:   analysis/Cormotif_analysis.Rmd
    Modified:   analysis/DEG_analysis.Rmd
    Modified:   analysis/GO_analysis_DAR_paper.Rmd
    Modified:   analysis/H3K27ac_integration.Rmd
    Modified:   analysis/Jaspar_motif.Rmd
    Modified:   analysis/Jaspar_motif_ff.Rmd
    Modified:   analysis/SNP_TAD_peaks.Rmd
    Modified:   analysis/TE_analysis_norm.Rmd
    Modified:   analysis/final_four_analysis.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/IF_counts.Rmd) and HTML (docs/IF_counts.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 429a742 reneeisnowhere 2025-08-05 adding table making code
html d32610f reneeisnowhere 2025-08-01 Build site.
Rmd f8c2002 reneeisnowhere 2025-08-01 adding macros
html c79f4be reneeisnowhere 2025-07-29 Build site.
Rmd cb0a956 reneeisnowhere 2025-07-29 colors replot
html a581f2f reneeisnowhere 2025-07-28 Build site.
Rmd 1a9a400 reneeisnowhere 2025-07-28 first commit
Rmd 6531274 reneeisnowhere 2025-07-22 first commit

library(tidyverse)

Custom imageJ macros to identify cell nuclei and ROIs:

// === STEP 1: Open first .tif image from the folder ===
folder = "C:\\userfolders\\Images_EVOS\\If_cardiotox\\87-1 images\\C_DAPI\\";
saveRoiFolder = "C:\\userfolders\\Images_EVOS\\If_cardiotox\\87-1 images\\outline\\";

list = getFileList(folder);

for (i = 0; i < list.length; i++) {
    if (endsWith(list[i], ".tif")) {
        // Open image
        open(folder + list[i]);
        originalTitle = getTitle();

        // === STEP 2: Duplicate and close original ===
        baseName = replace(getTitle(), ".tif", "");  // removes .tif extension
        newTitle = baseName;  // or whatever matches your naming
        run("Duplicate...", "title=" + newTitle);
        dupTitle = getTitle(); // duplicated image becomes active
        selectImage(originalTitle);
        close();

        // === STEP 3: Process duplicated image ===
        selectImage(dupTitle);
        run("8-bit");
        setAutoThreshold("Otsu dark");
        setOption("BlackBackground", true);
        run("Convert to Mask");
        run("Watershed");

        // === STEP 4: Analyze particles ===
        run("Analyze Particles...", "size=21-Infinity circularity=0.30-1.00 show=[Count Masks] display exclude summarize add");

        // === STEP 5: Save ROIs ===
        roiManager("Select", 0); // Avoid saving empty ROI manager
        saveName = replace(dupTitle, ".tif", "") + ".zip";
        roiManager("Save", saveRoiFolder + saveName);

        // Cleanup (optional)
        close();
        maskTitle = "Count Masks of " + dupTitle;
        if (isOpen(maskTitle)) {
            selectImage(maskTitle);
             close();
            }

        roiManager("Deselect");
        roiManager("Reset");

       // break; // Remove this line if you want to process all images in the folder
    }
}

Custom imageJ macros to use nuclei ROIs and detect any RED channel intesity for positive gammaH2AX staining

// === USER SETTINGS ===
roiFolder = "C:\\userfolders\\Images_EVOS\\If_cardiotox\\87-1 images\\outline\\";
txredFolder = "C:\\userfolders\\Images_EVOS\\If_cardiotox\\87-1 images\\C_TxRed\\";
outputFolder = "C:\\userfolders\\Images_EVOS\\If_cardiotox\\87-1 images\\DAPI_counts\\";
signalThreshold = 5;  // define what counts as a "positive signal"

// === GET ROI FILES ===
roiFiles = getFileList(roiFolder);
// Before the loop, open/create summary file
masterFile = outputFolder + "Master_summary.csv";
// Write header (run once, before loop)
if (File.exists(masterFile)) File.delete(masterFile);
File.append("Sample,Total_ROIs,Positive_ROIs\n", masterFile);

// === LOOP OVER EACH ROI FILE ===
for (i = 0; i < roiFiles.length; i++) {
    roiFile = roiFiles[i];
    
    // Only process .zip ROI files
    if (!endsWith(roiFile, ".zip")) continue;

    // Remove suffixes more precisely
    baseName = replace(roiFile, ".zip", "");  // e.g. "3h_87_DOX_B_DAPI_0004"

    // === Build full filenames ===
    roiPath = roiFolder + roiFile;
    txredImage = replace(baseName, "_DAPI_", "_TxRed_") + ".tif";
    txredPath = txredFolder + txredImage;
    outputCSV = outputFolder + "Cell_intensity_" + baseName + ".csv";

    // === Check if TxRed image exists ===
    if (!File.exists(txredPath)) {
        print("Skipping: TxRed image not found for", baseName);
        continue;
    }

    // === Open image ===
    open(txredPath);
    imageTitle = getTitle();

    // === Load ROI file ===
    roiManager("Reset");
    roiManager("Open", roiPath);
    roiManager("Show None");
    roiManager("Show All");

    // === Prepare image for analysis ===
    run("8-bit");
    setAutoThreshold("Otsu dark");
    getThreshold(lower, upper);

// Set a minimum acceptable threshold value (e.g., 25)
minThreshold = 10;
if (lower < minThreshold) {
    lower = minThreshold;
}

// Apply threshold with adjusted floor
setThreshold(lower, 255);
run("Convert to Mask");

    // === Measure signal in ROIs ===
    run("Set Measurements...", "area mean min redirect=None decimal=3");
    roiCount = roiManager("Count");

    if (roiCount == 0) {
        print("No ROIs in", roiFile);
        close(); // Close image
        continue;
    }

    roiIndexes = newArray(roiCount);
    for (j = 0; j < roiCount; j++) {
        roiIndexes[j] = j;
    }

    roiManager("Select", roiIndexes);
    roiManager("Measure");

    // === Count ROIs with mean > threshold ===
    positiveCount = 0;
    for (j = 0; j < roiCount; j++) {
        value = getResult("Mean", j);
        if (value > signalThreshold) {
            positiveCount++;
        }
    }
// === Optional quality control: flag unexpectedly low or high counts
minPos = 25;   // adjust to your expected lower limit
maxPos = 450;  // adjust to your expected upper limit

if (positiveCount < minPos || positiveCount > maxPos) {
    print("⚠️ WARNING: Sample", baseName, "has", positiveCount, "positive ROIs (expected between", minPos, "and", maxPos, ")");

    // Display the image and ROIs for inspection
    selectImage(imageTitle);
    roiManager("Show All");

    // Pause and allow manual threshold/ROI review
    waitForUser("Inspect and adjust this sample manually if needed.\nWhen done, click OK to re-measure and continue.");

    // Re-measure based on updated ROIs
    run("Clear Results");
    roiCount = roiManager("Count");

    roiIndexes = newArray(roiCount);
    for (j = 0; j < roiCount; j++) {
        roiIndexes[j] = j;
    }
    roiManager("Select", roiIndexes);
    roiManager("Measure");

    // Re-count positives after manual fix
    positiveCount = 0;
    for (j = 0; j < roiCount; j++) {
        value = getResult("Mean", j);
        if (value > signalThreshold) {
            positiveCount++;
        }
    }

    print("✅ After manual adjustment:", positiveCount, "positive ROIs");
}

    // === Save Results table ===
    saveAs("Results", outputCSV);
    // Inside your processing loop, after counting positives:
line = baseName + "," + roiCount + "," + positiveCount + "\n";
File.append(line, masterFile);

    // === Optional: Print summary to log ===
    print(baseName, ": ", positiveCount, "/", roiCount, " ROIs positive (>", signalThreshold, ")");

    // === Cleanup ===
    close(); // Close TxRed image
    roiManager("Reset");
    run("Clear Results");
}
drug_pal <- c("#8B006D","#DF707E","#F1B72B", "#3386DD","#707031","#41B333")
Nuclei_gamma_count_87<- read_delim("data/Final_four_data/re_analysis/IF_data/Nuclei_gamma_count_87.txt",delim="\t")
Nuclei_gamma_count_77<- read_delim("data/Final_four_data/re_analysis/IF_data/Nuclei_gamma_count_77.txt",delim="\t")
Nuclei_gamma_count_71<- read_delim("data/Final_four_data/re_analysis/IF_data/Nuclei_gamma_count_71.txt",delim="\t")

Nuclei_gamma_count_75<- read_delim("data/Final_four_data/re_analysis/IF_data/Nuclei_gamma_count_75.txt",delim="\t")
Ind_A_table <- Nuclei_gamma_count_87 %>% 
  dplyr::select(Sample,percentage) %>% 
  separate_wider_delim(Sample,delim = "_",names = c("time","ind","trt","focus"),too_many = "merge") %>% 
  group_by(trt,time) %>%
  mutate(group_number = rep(c("A","B"), length.out = n())) %>%
  mutate(trt=if_else(trt=="MTZ","MTX",trt)) %>% 
  ungroup() %>% 
  pivot_wider(., id_cols=c(time, ind,trt), names_from = group_number, values_from = percentage) %>% 
  rowwise() %>% 
  mutate(total = round(mean(c_across(c(A, B)), na.rm = TRUE), digits = 1)) %>% 
  ungroup() %>% 
  mutate(ind="A")

Ind_B_table <- Nuclei_gamma_count_77 %>% 
  dplyr::select(Sample,percentage) %>% 
  separate_wider_delim(Sample,delim = "_",names = c("time","ind","trt","focus"),too_many = "merge") %>% 
  group_by(trt,time) %>%
  mutate(group_number = rep(c("A","B"), length.out = n())) %>%
   mutate(trt=if_else(trt=="MTZ","MTX",trt)) %>% 
  ungroup() %>% 
  pivot_wider(., id_cols=c(time, ind,trt), names_from = group_number, values_from = percentage) %>% 
  rowwise() %>% 
  mutate(total = round(mean(c_across(c(A, B)), na.rm = TRUE), digits = 1)) %>% 
  ungroup() %>% 
  mutate(ind="B")

Ind_C_table <- Nuclei_gamma_count_71 %>% 
  dplyr::select(Sample,percentage) %>% 
  separate_wider_delim(Sample,delim = "_",names = c("time","ind","trt","focus"),too_many = "merge") %>% 
  group_by(trt,time) %>%
  mutate(group_number = rep(c("A","B"), length.out = n())) %>%
   mutate(trt=if_else(trt=="MTZ","MTX",trt)) %>% 
  ungroup() %>% 
  pivot_wider(., id_cols=c(time, ind,trt), names_from = group_number, values_from = percentage) %>% 
  rowwise() %>% 
  mutate(total = round(mean(c_across(c(A, B)), na.rm = TRUE), digits = 1)) %>% 
  ungroup() %>% 
  mutate(ind="C")



Ind_D_table <- Nuclei_gamma_count_75 %>% 
  dplyr::select(Sample,percentage) %>% 
  separate_wider_delim(Sample,delim = "_",names = c("time","ind","trt","focus"),too_many = "merge") %>% 
  group_by(trt,time) %>%
  mutate(group_number = rep(c("A","B"), length.out = n())) %>%
   mutate(trt=if_else(trt=="MTZ","MTX",trt)) %>% 
  ungroup() %>% 
  pivot_wider(., id_cols=c(time, ind,trt), names_from = group_number, values_from = percentage) %>% 
  rowwise() %>% 
  mutate(total = round(mean(c_across(c(A, B)), na.rm = TRUE), digits = 1)) %>% 
  ungroup() %>% 
  mutate(ind="D")
bind_rows(Ind_A_table,Ind_B_table) %>%
  bind_rows(., Ind_C_table) %>% 
  bind_rows(., Ind_D_table) %>% 
  mutate(time=factor(time, levels =c("3h","24h")),
         trt=factor(trt, levels = c("DOX","EPI","DNR","MTX","TRZ","VEH"))) %>% 
  ggplot(.,aes(x=trt, y=total))+
  geom_boxplot(aes(fill=trt))+
  geom_point(aes(colour = ind))+
  ggsignif:: geom_signif(comparisons = list(
      c("VEH", "DOX"),
      c("VEH", "EPI"),
      c("VEH", "DNR"),
      c("VEH", "MTX"),
      c("VEH", "TRZ")),
      step_increase = 0.1,
      map_signif_level = FALSE, 
      test = "t.test")+
      facet_wrap(~time)+
  theme_bw()+
  scale_fill_manual(values=drug_pal)

Version Author Date
c79f4be reneeisnowhere 2025-07-29
bind_rows(Ind_A_table,Ind_B_table) %>%
  bind_rows(., Ind_C_table) %>% 
  bind_rows(., Ind_D_table) %>% 
  mutate(time=factor(time, levels =c("3h","24h")),
         trt=factor(trt, levels = c("DOX","EPI","DNR","MTX","TRZ","VEH"))) %>% 
  ggplot(.,aes(x=trt, y=total))+
  geom_boxplot(aes(fill=trt))+
  geom_point(aes(colour = ind))+
  # ggsignif:: geom_signif(comparisons = list(
  #     c("VEH", "DOX"),
  #     c("VEH", "EPI"),
  #     c("VEH", "DNR"),
  #     c("VEH", "MTX"),
  #     c("VEH", "TRZ")),
  #     step_increase = 0.1,
  #     map_signif_level = FALSE, 
  #     test = "t.test")+
      facet_wrap(~time)+
  theme_bw()+
  scale_fill_manual(values=drug_pal)

Version Author Date
c79f4be reneeisnowhere 2025-07-29

making table for future publishing

bind_rows(Ind_A_table,Ind_B_table) %>%
  bind_rows(., Ind_C_table) %>% 
  bind_rows(., Ind_D_table) %>% 
  write_delim(., "data/Final_four_data/re_analysis/ATAC_excel_outputs/All_nuclei_gamma_counts.txt",delim="\t")

sessionInfo()
R version 4.4.2 (2024-10-31 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 26100)

Matrix products: default


locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

time zone: America/Chicago
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] lubridate_1.9.4 forcats_1.0.0   stringr_1.5.1   dplyr_1.1.4    
 [5] purrr_1.0.4     readr_2.1.5     tidyr_1.3.1     tibble_3.3.0   
 [9] ggplot2_3.5.2   tidyverse_2.0.0 workflowr_1.7.1

loaded via a namespace (and not attached):
 [1] sass_0.4.10        generics_0.1.4     stringi_1.8.7      hms_1.1.3         
 [5] digest_0.6.37      magrittr_2.0.3     timechange_0.3.0   evaluate_1.0.4    
 [9] grid_4.4.2         RColorBrewer_1.1-3 fastmap_1.2.0      rprojroot_2.0.4   
[13] jsonlite_2.0.0     processx_3.8.6     whisker_0.4.1      ps_1.9.1          
[17] promises_1.3.3     httr_1.4.7         scales_1.4.0       jquerylib_0.1.4   
[21] cli_3.6.5          crayon_1.5.3       rlang_1.1.6        bit64_4.6.0-1     
[25] withr_3.0.2        cachem_1.1.0       yaml_2.3.10        parallel_4.4.2    
[29] tools_4.4.2        tzdb_0.5.0         ggsignif_0.6.4     httpuv_1.6.16     
[33] vctrs_0.6.5        R6_2.6.1           lifecycle_1.0.4    git2r_0.36.2      
[37] bit_4.6.0          fs_1.6.6           vroom_1.6.5        pkgconfig_2.0.3   
[41] callr_3.7.6        pillar_1.11.0      bslib_0.9.0        later_1.4.2       
[45] gtable_0.3.6       glue_1.8.0         Rcpp_1.1.0         xfun_0.52         
[49] tidyselect_1.2.1   rstudioapi_0.17.1  knitr_1.50         dichromat_2.0-0.1 
[53] farver_2.1.2       htmltools_0.5.8.1  labeling_0.4.3     rmarkdown_2.29    
[57] compiler_4.4.2     getPass_0.2-4