Last updated: 2025-05-06

Checks: 7 0

Knit directory: ATAC_learning/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20231016) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version ce8f202. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/ACresp_SNP_table.csv
    Ignored:    data/ARR_SNP_table.csv
    Ignored:    data/All_merged_peaks.tsv
    Ignored:    data/CAD_gwas_dataframe.RDS
    Ignored:    data/CTX_SNP_table.csv
    Ignored:    data/Collapsed_expressed_NG_peak_table.csv
    Ignored:    data/DEG_toplist_sep_n45.RDS
    Ignored:    data/FRiP_first_run.txt
    Ignored:    data/Final_four_data/
    Ignored:    data/Frip_1_reads.csv
    Ignored:    data/Frip_2_reads.csv
    Ignored:    data/Frip_3_reads.csv
    Ignored:    data/Frip_4_reads.csv
    Ignored:    data/Frip_5_reads.csv
    Ignored:    data/Frip_6_reads.csv
    Ignored:    data/GO_KEGG_analysis/
    Ignored:    data/HF_SNP_table.csv
    Ignored:    data/Ind1_75DA24h_dedup_peaks.csv
    Ignored:    data/Ind1_TSS_peaks.RDS
    Ignored:    data/Ind1_firstfragment_files.txt
    Ignored:    data/Ind1_fragment_files.txt
    Ignored:    data/Ind1_peaks_list.RDS
    Ignored:    data/Ind1_summary.txt
    Ignored:    data/Ind2_TSS_peaks.RDS
    Ignored:    data/Ind2_fragment_files.txt
    Ignored:    data/Ind2_peaks_list.RDS
    Ignored:    data/Ind2_summary.txt
    Ignored:    data/Ind3_TSS_peaks.RDS
    Ignored:    data/Ind3_fragment_files.txt
    Ignored:    data/Ind3_peaks_list.RDS
    Ignored:    data/Ind3_summary.txt
    Ignored:    data/Ind4_79B24h_dedup_peaks.csv
    Ignored:    data/Ind4_TSS_peaks.RDS
    Ignored:    data/Ind4_V24h_fraglength.txt
    Ignored:    data/Ind4_fragment_files.txt
    Ignored:    data/Ind4_fragment_filesN.txt
    Ignored:    data/Ind4_peaks_list.RDS
    Ignored:    data/Ind4_summary.txt
    Ignored:    data/Ind5_TSS_peaks.RDS
    Ignored:    data/Ind5_fragment_files.txt
    Ignored:    data/Ind5_fragment_filesN.txt
    Ignored:    data/Ind5_peaks_list.RDS
    Ignored:    data/Ind5_summary.txt
    Ignored:    data/Ind6_TSS_peaks.RDS
    Ignored:    data/Ind6_fragment_files.txt
    Ignored:    data/Ind6_peaks_list.RDS
    Ignored:    data/Ind6_summary.txt
    Ignored:    data/Knowles_4.RDS
    Ignored:    data/Knowles_5.RDS
    Ignored:    data/Knowles_6.RDS
    Ignored:    data/LiSiLTDNRe_TE_df.RDS
    Ignored:    data/MI_gwas.RDS
    Ignored:    data/SNP_GWAS_PEAK_MRC_id
    Ignored:    data/SNP_GWAS_PEAK_MRC_id.csv
    Ignored:    data/SNP_gene_cat_list.tsv
    Ignored:    data/SNP_supp_schneider.RDS
    Ignored:    data/TE_info/
    Ignored:    data/TFmapnames.RDS
    Ignored:    data/all_TSSE_scores.RDS
    Ignored:    data/all_four_filtered_counts.txt
    Ignored:    data/aln_run1_results.txt
    Ignored:    data/anno_ind1_DA24h.RDS
    Ignored:    data/anno_ind4_V24h.RDS
    Ignored:    data/annotated_gwas_SNPS.csv
    Ignored:    data/background_n45_he_peaks.RDS
    Ignored:    data/cardiac_muscle_FRIP.csv
    Ignored:    data/cardiomyocyte_FRIP.csv
    Ignored:    data/col_ng_peak.csv
    Ignored:    data/cormotif_full_4_run.RDS
    Ignored:    data/cormotif_full_4_run_he.RDS
    Ignored:    data/cormotif_full_6_run.RDS
    Ignored:    data/cormotif_full_6_run_he.RDS
    Ignored:    data/cormotif_probability_45_list.csv
    Ignored:    data/cormotif_probability_45_list_he.csv
    Ignored:    data/cormotif_probability_all_6_list.csv
    Ignored:    data/cormotif_probability_all_6_list_he.csv
    Ignored:    data/datasave.RDS
    Ignored:    data/embryo_heart_FRIP.csv
    Ignored:    data/enhancer_list_ENCFF126UHK.bed
    Ignored:    data/enhancerdata/
    Ignored:    data/filt_Peaks_efit2.RDS
    Ignored:    data/filt_Peaks_efit2_bl.RDS
    Ignored:    data/filt_Peaks_efit2_n45.RDS
    Ignored:    data/first_Peaksummarycounts.csv
    Ignored:    data/first_run_frag_counts.txt
    Ignored:    data/full_bedfiles/
    Ignored:    data/gene_ref.csv
    Ignored:    data/gwas_1_dataframe.RDS
    Ignored:    data/gwas_2_dataframe.RDS
    Ignored:    data/gwas_3_dataframe.RDS
    Ignored:    data/gwas_4_dataframe.RDS
    Ignored:    data/gwas_5_dataframe.RDS
    Ignored:    data/high_conf_peak_counts.csv
    Ignored:    data/high_conf_peak_counts.txt
    Ignored:    data/high_conf_peaks_bl_counts.txt
    Ignored:    data/high_conf_peaks_counts.txt
    Ignored:    data/hits_files/
    Ignored:    data/hyper_files/
    Ignored:    data/hypo_files/
    Ignored:    data/ind1_DA24hpeaks.RDS
    Ignored:    data/ind1_TSSE.RDS
    Ignored:    data/ind2_TSSE.RDS
    Ignored:    data/ind3_TSSE.RDS
    Ignored:    data/ind4_TSSE.RDS
    Ignored:    data/ind4_V24hpeaks.RDS
    Ignored:    data/ind5_TSSE.RDS
    Ignored:    data/ind6_TSSE.RDS
    Ignored:    data/initial_complete_stats_run1.txt
    Ignored:    data/left_ventricle_FRIP.csv
    Ignored:    data/median_24_lfc.RDS
    Ignored:    data/median_3_lfc.RDS
    Ignored:    data/mergedPeads.gff
    Ignored:    data/mergedPeaks.gff
    Ignored:    data/motif_list_full
    Ignored:    data/motif_list_n45
    Ignored:    data/motif_list_n45.RDS
    Ignored:    data/multiqc_fastqc_run1.txt
    Ignored:    data/multiqc_fastqc_run2.txt
    Ignored:    data/multiqc_genestat_run1.txt
    Ignored:    data/multiqc_genestat_run2.txt
    Ignored:    data/my_hc_filt_counts.RDS
    Ignored:    data/my_hc_filt_counts_n45.RDS
    Ignored:    data/n45_bedfiles/
    Ignored:    data/n45_files
    Ignored:    data/other_papers/
    Ignored:    data/peakAnnoList_1.RDS
    Ignored:    data/peakAnnoList_2.RDS
    Ignored:    data/peakAnnoList_24_full.RDS
    Ignored:    data/peakAnnoList_24_n45.RDS
    Ignored:    data/peakAnnoList_3.RDS
    Ignored:    data/peakAnnoList_3_full.RDS
    Ignored:    data/peakAnnoList_3_n45.RDS
    Ignored:    data/peakAnnoList_4.RDS
    Ignored:    data/peakAnnoList_5.RDS
    Ignored:    data/peakAnnoList_6.RDS
    Ignored:    data/peakAnnoList_Eight.RDS
    Ignored:    data/peakAnnoList_full_motif.RDS
    Ignored:    data/peakAnnoList_n45_motif.RDS
    Ignored:    data/siglist_full.RDS
    Ignored:    data/siglist_n45.RDS
    Ignored:    data/summarized_peaks_dataframe.txt
    Ignored:    data/summary_peakIDandReHeat.csv
    Ignored:    data/test.list.RDS
    Ignored:    data/testnames.txt
    Ignored:    data/toplist_6.RDS
    Ignored:    data/toplist_full.RDS
    Ignored:    data/toplist_full_DAR_6.RDS
    Ignored:    data/toplist_n45.RDS
    Ignored:    data/trimmed_seq_length.csv
    Ignored:    data/unclassified_full_set_peaks.RDS
    Ignored:    data/unclassified_n45_set_peaks.RDS
    Ignored:    data/xstreme/

Untracked files:
    Untracked:  analysis/Diagnosis-tmm.Rmd
    Untracked:  analysis/Expressed_RNA_associations.Rmd
    Untracked:  analysis/LFC_corr.Rmd
    Untracked:  analysis/QC_on_reads.Rmd
    Untracked:  analysis/SVA.Rmd
    Untracked:  analysis/Tan2020.Rmd
    Untracked:  analysis/my_hc_filt_counts.csv
    Untracked:  code/IGV_snapshot_code.R
    Untracked:  code/LongDARlist.R
    Untracked:  code/just_for_Fun.R
    Untracked:  output/cormotif_probability_45_list.csv
    Untracked:  output/cormotif_probability_all_6_list.csv
    Untracked:  setup.RData

Unstaged changes:
    Modified:   ATAC_learning.Rproj
    Modified:   analysis/Jaspar_motif.Rmd
    Modified:   analysis/final_four_analysis.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Jaspar_motif_ff.Rmd) and HTML (docs/Jaspar_motif_ff.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd ce8f202 reneeisnowhere 2025-05-06 update webpage
html 8520f12 E. Renee Matthews 2025-01-27 Build site.
Rmd b8446aa E. Renee Matthews 2025-01-27 adjust ESR open axis
html aa0769e E. Renee Matthews 2025-01-02 Build site.
Rmd 68ded3e E. Renee Matthews 2025-01-02 new data
html 1c68be2 reneeisnowhere 2024-12-23 Build site.
Rmd 46d4487 reneeisnowhere 2024-12-23 updates to motif table
Rmd 2698702 reneeisnowhere 2024-11-14 more commits
html b5b2c0f reneeisnowhere 2024-10-18 Build site.
Rmd 73ac3ff reneeisnowhere 2024-10-18 Adding zbtb14 for EAR_open
html 5bf51a6 reneeisnowhere 2024-10-18 Build site.
Rmd ac14581 reneeisnowhere 2024-10-18 updates to plotting
html b7543b3 reneeisnowhere 2024-10-14 Build site.
Rmd 51ccf8f reneeisnowhere 2024-10-14 updates to motif sets
html f9c15bd reneeisnowhere 2024-10-12 Build site.
Rmd 5609d59 reneeisnowhere 2024-10-12 updates
html d8eef0e reneeisnowhere 2024-10-09 Build site.
Rmd 12a7203 reneeisnowhere 2024-10-09 updates to motif position plots!
html 14551f7 reneeisnowhere 2024-09-26 Build site.
Rmd 6cdc685 reneeisnowhere 2024-09-26 updates with 4 sets of peaks

packages
library(tidyverse)
library(cowplot)
library(kableExtra)
library(broom)
library(RColorBrewer)
library(ChIPseeker)
library("TxDb.Hsapiens.UCSC.hg38.knownGene")
library("org.Hs.eg.db")
library(rtracklayer)
library(edgeR)
library(ggfortify)
library(limma)
library(readr)
library(BiocGenerics)
library(gridExtra)
library(VennDiagram)
library(scales)
library(Cormotif)
library(BiocParallel)
library(ggpubr)
library(devtools)
library(JASPAR2022)
library(TFBSTools)
library(MotifDb)
library(BSgenome.Hsapiens.UCSC.hg38)
library(data.table)
library(universalmotif)
library(ggseqlogo)
library(motifmatchr)
library(gridExtra)

Data loading

# 
# lala <- read_delim("C:/Users/renee/ATAC_folder/ATAC_meme_data/200bp/EAR_open_200xstreme/xstreme.tsv",
#     delim = "\t", escape_double = FALSE,
#     trim_ws = TRUE)

# saveRDS(xstreme_EAR_openSVA,"data/Final_four_data/xstreme/xstreme_EAR_openSVA.RDS")



# saveRDS(xstreme_EAR_close200,"data/Final_four_data/xstreme/xstreme_EAR_close200.RDS")
# saveRDS(xstreme_EAR_open200,"data/Final_four_data/xstreme/xstreme_EAR_open200.RDS")
# saveRDS(xstreme_ESR_open200,"data/Final_four_data/xstreme/xstreme_ESR_open200.RDS")
# saveRDS(xstreme_ESR_close200,"data/Final_four_data/xstreme/xstreme_ESR_close200.RDS")
# saveRDS(ESR_OC_xstreme,"data/Final_four_data/xstreme/ESR_OC_xstreme.RDS")
# saveRDS(ESR_C_xstreme,"data/Final_four_data/xstreme/ESR_OC_xstreme.RDS")
# saveRDS(xstreme_ESR_clop200,"data/Final_four_data/xstreme/xstreme_ESR_clop200.RDS")
# saveRDS(xstreme_LR_close200,"data/Final_four_data/xstreme/xstreme_LR_close200.RDS")
# saveRDS(xstreme_LR_open200,"data/Final_four_data/xstreme/xstreme_LR_open200.RDS")
# saveRDS(LR_open_10h_xstreme,"data/Final_four_data/xstreme/LR_open_10h_xstreme.RDS")
# saveRDS(xstreme_ESR_opcl200,"data/Final_four_data/xstreme/xstreme_ESR_opcl200.RDS")


EAR_close_xstreme <-
  readRDS("data/Final_four_data/xstreme/EAR_close_xstreme.RDS")%>%
  slice_head(n = length(.$ID)-3)
EAR_open_xstreme <- 
  readRDS("data/Final_four_data/xstreme/EAR_open_xstreme.RDS")%>%
  slice_head(n = length(.$ID)-3)
ESR_open_xstreme <- 
  readRDS("data/Final_four_data/xstreme/ESR_open_xstreme.RDS")%>%
  slice_head(n = length(.$ID)-3)
ESR_close_xstreme <- 
  readRDS("data/Final_four_data/xstreme/ESR_close_xstreme.RDS")%>%
  slice_head(n = length(.$ID)-3)
ESR_OC_xstreme <- 
  readRDS("data/Final_four_data/xstreme/ESR_OC_xstreme.RDS")%>%
  slice_head(n = length(.$ID)-3)
ESR_opcl_xstreme <- 
  readRDS("data/Final_four_data/xstreme/xstreme_ESR_opcl200.RDS")%>%
  slice_head(n = length(.$ID)-3)
ESR_clop_xstreme <- 
  readRDS("data/Final_four_data/xstreme/xstreme_ESR_clop200.RDS")%>%
  slice_head(n = length(.$ID)-3)


LR_close_xstreme <-
  readRDS("data/Final_four_data/xstreme/LR_close_xstreme.RDS")%>%
  slice_head(n = length(.$ID)-3)
LR_open_xstreme <-
  readRDS("data/Final_four_data/xstreme/LR_open_10h_xstreme.RDS")%>%
  slice_head(n = length(.$ID)-3)
LR_open_10h_xstreme <-
  readRDS("data/Final_four_data/xstreme/LR_open_10h_xstreme.RDS")%>%
  slice_head(n = length(.$ID)-3)

EAR_close_200xstreme <-
  readRDS("data/Final_four_data/xstreme/xstreme_EAR_close200.RDS")%>%
  slice_head(n = length(.$ID)-3)
EAR_open_200xstreme <- 
  readRDS("data/Final_four_data/xstreme/xstreme_EAR_open200.RDS")%>%
  slice_head(n = length(.$ID)-3)
ESR_open_200xstreme <- 
  readRDS("data/Final_four_data/xstreme/xstreme_ESR_open200.RDS")%>%
  slice_head(n = length(.$ID)-3)

ESR_close_200xstreme <- 
  readRDS("data/Final_four_data/xstreme/xstreme_ESR_close200.RDS")%>%
  slice_head(n = length(.$ID)-3)
ESR_OC_xstreme <-
  readRDS("data/Final_four_data/xstreme/xstreme_LR_open200.RDS")%>%
  slice_head(n = length(.$ID)-3)
LR_close_200xstreme <-
  readRDS("data/Final_four_data/xstreme/xstreme_LR_close200.RDS")%>%
  slice_head(n = length(.$ID)-3)
LR_open_200xstreme <-
  readRDS("data/Final_four_data/xstreme/xstreme_LR_open200.RDS")%>%
  slice_head(n = length(.$ID)-3)
#### full sequence sea out
sea_EAR_open <- readRDS("data/Final_four_data/xstreme/sea_EAR_open.RDS")%>%
  slice_head(n = length(.$ID)-3)
sea_EAR_close <- readRDS("data/Final_four_data/xstreme/sea_EAR_close.RDS")%>%
  slice_head(n = length(.$ID)-3)
sea_ESR_close <- readRDS("data/Final_four_data/xstreme/sea_ESR_close.RDS")
sea_ESR_open <- readRDS("data/Final_four_data/xstreme/sea_ESR_open.RDS")#%>%
  # slice_head(n = length(.$ID)-3)
 
sea_ESR_OC <- readRDS("data/Final_four_data/xstreme/sea_ESR_OC.RDS")%>%
  slice_head(n = length(.$ID)-3)
sea_LR_open <- readRDS("data/Final_four_data/xstreme/sea_LR_open_10h.RDS")%>%
  slice_head(n = length(.$ID)-3)
sea_LR_close <- readRDS("data/Final_four_data/xstreme/sea_LR_close.RDS")%>%
  slice_head(n = length(.$ID)-3)

sea_LR_open <- readRDS("data/Final_four_data/xstreme/sea_LR_open_10h.RDS")%>%
  slice_head(n = length(.$ID)-3)


### sea out 200 bp sequences
# sea_ESR_clop200 <- read_delim("~/ATAC_meme_data/200bp/ESR_D_200xstreme/sea_out/sea.tsv",
#     delim = "\t", escape_double = FALSE,
#     trim_ws = TRUE)
# saveRDS(sea_ESR_clop200,"data/Final_four_data/xstreme/sea_ESR_clop_200.RDS")

### sea part2!

sea_EAR_open_200 <- readRDS("data/Final_four_data/xstreme/sea_EAR_open_200.RDS")%>%
  slice_head(n = length(.$ID)-3)
sea_EAR_close_200 <- readRDS("data/Final_four_data/xstreme/sea_EAR_close_200.RDS")%>%
  slice_head(n = length(.$ID)-3)
sea_ESR_close_200 <- readRDS("data/Final_four_data/xstreme/sea_ESR_close_200.RDS")%>%
  slice_head(n = length(.$ID)-3)
sea_ESR_open_200 <- readRDS("data/Final_four_data/xstreme/sea_ESR_open_200.RDS")%>%
  slice_head(n = length(.$ID)-3)
sea_ESR_opcl_200 <- readRDS("data/Final_four_data/xstreme/sea_ESR_opcl_200.RDS")%>%
  slice_head(n = length(.$ID)-3)

sea_ESR_clop_200 <- readRDS("data/Final_four_data/xstreme/sea_ESR_clop_200.RDS")%>%
  slice_head(n = length(.$ID)-3)

sea_LR_open_200 <- readRDS("data/Final_four_data/xstreme/sea_LR_open_200.RDS")%>%
  slice_head(n = length(.$ID)-3)
sea_LR_close_200 <- readRDS("data/Final_four_data/xstreme/sea_LR_close_200.RDS")%>%
  slice_head(n = length(.$ID)-3)


### sea part2!  This is for missing merged data in sea_disc_out 
# sea_ESR_clop_p2 <- read_delim("~/ATAC_meme_data/200bp/ESR_D_200xstreme/sea_disc_out/sea.tsv",
#     delim = "\t", escape_double = FALSE,
#     trim_ws = TRUE)
# saveRDS(sea_ESR_clop_p2,"data/Final_four_data/xstreme/sea_ESR_clop_200_p2.RDS")


sea_EAR_open_200_p2 <- readRDS("data/Final_four_data/xstreme/sea_EAR_open_200_p2.RDS")%>%
  slice_head(n = length(.$ID)-3)
sea_EAR_close_200_p2 <- readRDS("data/Final_four_data/xstreme/sea_EAR_close_200_p2.RDS")%>%
  slice_head(n = length(.$ID)-3)
sea_ESR_close_200_p2 <- readRDS("data/Final_four_data/xstreme/sea_ESR_close_200_p2.RDS")%>%
  slice_head(n = length(.$ID)-3)
sea_ESR_open_200_p2 <- readRDS("data/Final_four_data/xstreme/sea_ESR_open_200_p2.RDS")%>%
  slice_head(n = length(.$ID)-3)
sea_ESR_opcl_200_p2 <- readRDS("data/Final_four_data/xstreme/sea_ESR_opcl_200_p2.RDS")%>%
  slice_head(n = length(.$ID)-3)
sea_ESR_clop_200_p2 <- readRDS("data/Final_four_data/xstreme/sea_ESR_clop_200_p2.RDS")%>%
  slice_head(n = length(.$ID)-3)

sea_LR_open_200_p2 <- readRDS("data/Final_four_data/xstreme/sea_LR_open_200_p2.RDS")%>%
  slice_head(n = length(.$ID)-3)
sea_LR_close_200_p2 <- readRDS("data/Final_four_data/xstreme/sea_LR_close_200_p2.RDS")%>%
  slice_head(n = length(.$ID)-3)




peakAnnoList_ff_8motif <- readRDS("data/Final_four_data/peakAnnoList_ff_8motif.RDS")
# saveRDS(ESR_D,"data/Final_four_data/ESR_D.RDS") 
toplistall_RNA <- readRDS("data/other_papers/toplistall_RNA.RDS")
###Because of how I applied the DEG system in RNA-seq analysis, the lFC is opposite of the 
###counts.   I did trt-veh instead of veh-trt.  therefore I need to multiply lfc by -1 to get t
###the right correlation.

toplistall_RNA <- toplistall_RNA %>%
  mutate(logFC = logFC*(-1))

RNA_expresed_genes <- toplistall_RNA %>%
  # dplyr::filter(adj.P.Val <0.05) %>%
   mutate(expression = if_else(logFC<0,"down","up")) %>%
  dplyr::select(ENTREZID,SYMBOL,expression) %>%
  # dplyr::select(ENTREZID,SYMBOL) %>%
  unique(.)
RNA_expresed_genes_DE <- toplistall_RNA %>%
  dplyr::filter(adj.P.Val <0.05) %>%
  mutate(expression = if_else(logFC<0,"down","up")) %>%
  dplyr::select(ENTREZID,SYMBOL,expression) %>%
  unique(.)

Enrichment all peaks to NR peaks

EAR lists

# EAR_open_xstreme%>% 
#   dplyr::select(RANK,SIM_MOTIF,ALT_ID, ID,SEA_PVALUE,EVALUE) %>% 
#   arrange(.,EVALUE) %>% 
#   dplyr::mutate_if(is.numeric, funs(as.character(signif(., 3)))) %>%
#   kable(., caption = "Enriched motifs in EAR open v NR") %>%
#   kable_paper("striped", full_width = TRUE) %>%
#   kable_styling(full_width = FALSE, font_size = 16) %>%
#   scroll_box(height = "500px")

EAR_open_200xstreme%>% 
  dplyr::select(RANK,SIM_MOTIF,ALT_ID, ID,SEA_PVALUE,EVALUE) %>% 
  arrange(.,EVALUE) %>% 
  dplyr::mutate_if(is.numeric, funs(as.character(signif(., 3)))) %>%
  kable(., caption = "Enriched motifs 200 bp in EAR open v NR") %>%
  kable_paper("striped", full_width = TRUE) %>%
  kable_styling(full_width = FALSE, font_size = 16) %>%
  scroll_box(height = "500px")
Enriched motifs 200 bp in EAR open v NR
RANK SIM_MOTIF ALT_ID ID SEA_PVALUE EVALUE
5 MA1650.1 ZBTB14 MA1650.1 2.42e-39 2.07e-36
7 MA0506.2 Nrf1 MA0506.2 2.82e-38 2.41e-35
114 MA1125.1 (ZNF384) MEME-1 TTWTTTTTTTWTTTT 0.901 1.1e-31
9 MA1713.1 ZNF610 MA1713.1 2.55e-30 2.18e-27
12 MA0131.2 HINFP MA0131.2 2.26e-24 1.93e-21
13 MA1122.1 TFDP1 MA1122.1 7.68e-24 6.56e-21
14 MA1721.1 ZNF93 MA1721.1 8.56e-24 7.31e-21
15 MA0865.2 E2F8 MA0865.2 1.39e-23 1.19e-20
16 MA1513.1 KLF15 MA1513.1 4.24e-23 3.62e-20
18 MA0024.3 E2F1 MA0024.3 3.59e-21 3.06e-18
19 MA0527.1 ZBTB33 MA0527.1 1.62e-19 1.38e-16
20 MA0162.4 EGR1 MA0162.4 1.45e-18 1.24e-15
21 MA0814.2 TFAP2C MA0814.2 2.46e-18 2.1e-15
22 MA0748.2 YY2 MA0748.2 9.82e-18 8.38e-15
24 MA0632.2 TCFL5 MA0632.2 1.3e-16 1.11e-13
25 MA0864.2 E2F2 MA0864.2 2.29e-16 1.96e-13
26 MA0810.1 TFAP2A MA0810.1 3.28e-16 2.8e-13
27 MA0823.1 HEY1 MA0823.1 6.39e-16 5.46e-13
28 MA0732.1 EGR3 MA0732.1 9.97e-16 8.51e-13
29 MA0470.2 E2F4 MA0470.2 2.35e-15 2.01e-12
30 MA0472.2 EGR2 MA0472.2 3.21e-15 2.74e-12
32 MA0759.2 ELK3 MA0759.2 9.84e-15 8.4e-12
33 MA1106.1 HIF1A MA1106.1 5.52e-14 4.71e-11
34 MA0764.3 ETV4 MA0764.3 1.78e-13 1.52e-10
35 MA0028.2 ELK1 MA0028.2 1.96e-13 1.67e-10
36 MA0006.1 Ahr::Arnt MA0006.1 2.04e-13 1.74e-10
37 MA0615.1 Gmeb1 MA0615.1 4.9e-13 4.18e-10
38 MA0524.2 TFAP2C MA0524.2 6.16e-13 5.26e-10
39 MA0765.3 ETV5 MA0765.3 1.11e-12 9.5e-10
40 MA1966.1 TFAP4::ETV1 MA1966.1 1.33e-12 1.14e-09
41 MA1560.1 SOHLH2 MA1560.1 1.82e-12 1.56e-09
42 MA0821.2 HES5 MA0821.2 3.19e-12 2.72e-09
43 MA0811.1 TFAP2B MA0811.1 3.25e-12 2.78e-09
44 MA0156.3 FEV MA0156.3 5.77e-12 4.92e-09
45 MA1545.1 OVOL2 MA1545.1 8.77e-12 7.49e-09
46 MA1727.1 ZNF417 MA1727.1 1.44e-11 1.23e-08
2 MA1713.1 (ZNF610) MEME-3 SCSGSSGCGGSSSCG 2.72e-45 1.4e-08
47 MA1099.2 HES1 MA1099.2 1.96e-11 1.67e-08
48 MA0098.3 ETS1 MA0098.3 3.74e-11 3.2e-08
49 MA1569.1 TFAP2E MA1569.1 3.77e-11 3.22e-08
50 MA1961.1 PATZ1 MA1961.1 4.01e-11 3.42e-08
51 MA0733.1 EGR4 MA0733.1 4.47e-11 3.82e-08
52 MA1102.2 CTCFL MA1102.2 4.7e-11 4.02e-08
53 MA0475.2 FLI1 MA0475.2 4.93e-11 4.21e-08
104 MA1107.2 (KLF9) MEME-2 TGTGTGTGTGTGTGT 1.73e-05 5.4e-08
54 MA0259.1 ARNT::HIF1A MA0259.1 7.69e-11 6.57e-08
55 MA1684.1 Foxn1 MA1684.1 1.26e-10 1.08e-07
56 MA1596.1 ZNF460 MA1596.1 1.86e-10 1.59e-07
57 MA0750.2 ZBTB7A MA0750.2 1.89e-10 1.61e-07
58 MA0695.1 ZBTB7C MA0695.1 2.2e-10 1.88e-07
59 MA0872.1 TFAP2A MA0872.1 5.76e-10 4.92e-07
60 MA1971.1 ZBED2 MA1971.1 8.84e-10 7.55e-07
61 MA0645.1 ETV6 MA0645.1 1.16e-09 9.93e-07
62 MA0763.1 ETV3 MA0763.1 2.04e-09 1.74e-06
63 MA1522.1 MAZ MA1522.1 2.04e-09 1.75e-06
64 MA1976.1 ZNF320 MA1976.1 2.62e-09 2.24e-06
65 MA0649.1 HEY2 MA0649.1 3.65e-09 3.12e-06
66 MA1583.1 ZFP57 MA1583.1 3.8e-09 3.25e-06
1 MA1961.1 (PATZ1) STREME-1 1-CGCCSCCGCCSCSSS 1.61e-45 7.11e-06
67 MA1648.1 TCF12 MA1648.1 8.42e-09 7.19e-06
68 MA1484.1 ETS2 MA1484.1 8.6e-09 7.35e-06
69 MA0076.2 ELK4 MA0076.2 1.23e-08 1.05e-05
70 MA0736.1 GLIS2 MA0736.1 2.43e-08 2.07e-05
71 MA0616.2 HES2 MA0616.2 3.05e-08 2.6e-05
72 MA0830.2 TCF4 MA0830.2 3.41e-08 2.91e-05
73 MA1719.1 ZNF816 MA1719.1 4.41e-08 3.77e-05
31 MA0076.2 (ELK4) STREME-2 2-CCGGAAGCCG 4.32e-15 3.79e-05
74 MA0104.4 MYCN MA0104.4 5.34e-08 4.56e-05
75 MA1548.1 PLAGL2 MA1548.1 5.69e-08 4.86e-05
76 MA1708.1 ETV7 MA1708.1 1.4e-07 0.000119
77 MA0516.3 SP2 MA0516.3 1.52e-07 0.00013
78 MA0471.2 E2F6 MA0471.2 3.05e-07 0.00026
79 MA1653.1 ZNF148 MA1653.1 3.47e-07 0.000296
80 MA1533.1 NR1I2 MA1533.1 4.19e-07 0.000358
81 MA0067.2 PAX2 MA0067.2 5.58e-07 0.000477
82 MA1990.1 Gli1 MA1990.1 5.77e-07 0.000493
83 MA1651.1 ZFP42 MA1651.1 5.84e-07 0.000499
84 MA1929.1 CTCF MA1929.1 5.88e-07 0.000502
85 MA1973.1 ZKSCAN3 MA1973.1 9.46e-07 0.000808
4 MA0506.2 (Nrf1) STREME-3 3-GCGCCGGCGC 4.1e-41 0.00117
86 MA0147.3 MYC MA0147.3 1.48e-06 0.00126
87 MA1931.1 ELK1::HOXA1 MA1931.1 1.7e-06 0.00145
88 MA0004.1 Arnt MA0004.1 1.87e-06 0.00159
89 MA1474.1 CREB3L4 MA1474.1 1.97e-06 0.00168
90 MA1712.1 ZNF454 MA1712.1 2.15e-06 0.00184
91 MA1941.1 ETV2::FIGLA MA1941.1 2.58e-06 0.00221
92 MA0812.1 TFAP2B MA0812.1 3.06e-06 0.00262
93 MA1515.1 KLF2 MA1515.1 4.6e-06 0.00393
94 MA0146.2 Zfx MA0146.2 5.83e-06 0.00498
95 MA1934.1 ERF::FIGLA MA1934.1 7.25e-06 0.00619
96 MA0145.2 Tfcp2l1 MA0145.2 8.61e-06 0.00736
8 MA0865.2 (E2F8) STREME-4 4-CGGGAG 1.32e-33 0.0074
97 MA0734.3 Gli2 MA0734.3 8.9e-06 0.0076
10 MA1650.1 (ZBTB14) STREME-5 5-CGCGCAG 1.88e-28 0.00805
98 MA0862.1 GMEB2 MA0862.1 9.62e-06 0.00822
99 MA0646.1 GCM1 MA0646.1 9.89e-06 0.00845
100 MA0863.1 MTF1 MA0863.1 1.01e-05 0.00863
101 MA1716.1 ZNF76 MA1716.1 1.07e-05 0.0091
102 MA1711.1 ZNF343 MA1711.1 1.2e-05 0.0102
103 MA1464.1 ARNT2 MA1464.1 1.6e-05 0.0136
105 MA1584.1 ZIC5 MA1584.1 1.74e-05 0.0148
106 MA0522.3 TCF3 MA0522.3 2.04e-05 0.0174
23 MA1938.1 (ERF::NHLH1) STREME-6 6-CGGCAGC 1.38e-17 0.0177
107 MA0694.1 ZBTB7B MA0694.1 2.12e-05 0.0181
108 MA1635.1 BHLHE22 MA1635.1 2.96e-05 0.0253
109 MA1564.1 SP9 MA1564.1 3.46e-05 0.0295
110 MA0751.1 ZIC4 MA0751.1 3.52e-05 0.0301
111 MA1578.1 VEZF1 MA1578.1 3.55e-05 0.0303
112 MA0597.2 THAP1 MA0597.2 5.11e-05 0.0436
113 MA0760.1 ERF MA0760.1 5.46e-05 0.0466
3 7-CTCSGGCCGG STREME-7 7-CTCSGGCCGG 1.35e-43 0.053
11 8-HCSSSGD STREME-8 8-HCSSSGD 8.08e-25 0.0688
6 MA1713.1 (ZNF610) STREME-9 9-GCGGCC 7.98e-39 0.0821
17 10-YGSACGW STREME-10 10-YGSACGW 1.02e-21 4.94
# EAR_close_xstreme %>% 
#   dplyr::select(RANK,SIM_MOTIF,ALT_ID, ID,SEA_PVALUE,EVALUE) %>% 
#   arrange(.,EVALUE) %>% 
#   # separate(SIM_MOTIF, into= c("SIM_MOTIF", "NAME"), sep= " ") %>% 
#   # dplyr::filter(., EVALUE<0.05) %>% 
#   dplyr::mutate_if(is.numeric, funs(as.character(signif(., 3)))) %>%
#   kable(., caption = "Enriched motifs in EAR close") %>%
#   kable_paper("striped", full_width = TRUE) %>%
#   kable_styling(full_width = FALSE, font_size = 16) %>%
#   scroll_box(height = "500px")
EAR_close_200xstreme %>% 
  dplyr::select(RANK,SIM_MOTIF,ALT_ID, ID,SEA_PVALUE,EVALUE) %>% 
  arrange(.,EVALUE) %>% 
  # separate(SIM_MOTIF, into= c("SIM_MOTIF", "NAME"), sep= " ") %>% 
  # dplyr::filter(., EVALUE<0.05) %>% 
  dplyr::mutate_if(is.numeric, funs(as.character(signif(., 3)))) %>%
  kable(., caption = "Enriched motifs in EAR close 200bp") %>%
  kable_paper("striped", full_width = TRUE) %>%
  kable_styling(full_width = FALSE, font_size = 16) %>%
  scroll_box(height = "500px")
Enriched motifs in EAR close 200bp
RANK SIM_MOTIF ALT_ID ID SEA_PVALUE EVALUE
1 MA1988.1 Atf3 MA1988.1 5.76e-79 4.97e-76
2 MA0099.3 FOS::JUN MA0099.3 7.68e-78 6.63e-75
3 MA1130.1 FOSL2::JUN MA1130.1 2.59e-76 2.24e-73
4 MA1634.1 BATF MA1634.1 1.33e-75 1.15e-72
5 MA0478.1 FOSL2 MA0478.1 6.12e-74 5.27e-71
6 MA0476.1 FOS MA0476.1 8.67e-73 7.48e-70
7 MA0462.2 BATF::JUN MA0462.2 2.17e-71 1.87e-68
8 MA1928.1 BNC2 MA1928.1 4.56e-71 3.93e-68
9 MA1633.2 BACH1 MA1633.2 4.39e-68 3.78e-65
10 MA1137.1 FOSL1::JUNB MA1137.1 1.32e-67 1.14e-64
11 MA0655.1 JDP2 MA0655.1 3.48e-64 3e-61
12 MA1138.1 FOSL2::JUNB MA1138.1 4.11e-63 3.54e-60
13 MA1134.1 FOS::JUNB MA1134.1 3.79e-62 3.27e-59
345 MA1125.1 (ZNF384) MEME-1 AAAAAAAAAAAAAAW 0.000107 5.2e-59
14 MA0841.1 NFE2 MA0841.1 1.35e-61 1.16e-58
15 MA1135.1 FOSB::JUNB MA1135.1 5.79e-61 4.99e-58
16 MA1144.1 FOSL2::JUND MA1144.1 6.98e-60 6.02e-57
18 MA1101.2 BACH2 MA1101.2 2.66e-58 2.29e-55
19 MA1141.1 FOS::JUND MA1141.1 9.51e-58 8.2e-55
21 MA1128.1 FOSL1::JUN MA1128.1 1.2e-55 1.03e-52
22 MA0766.2 GATA5 MA0766.2 1.05e-52 9.06e-50
23 MA0501.1 MAF::NFE2 MA0501.1 1.17e-52 1.01e-49
24 MA0835.2 BATF3 MA0835.2 2.69e-52 2.32e-49
348 MA1596.1 (ZNF460) MEME-2 GGGAGGVDGRGGHDG 0.103 3e-47
26 MA1142.1 FOSL1::JUND MA1142.1 2.07e-48 1.78e-45
27 MA0491.2 JUND MA0491.2 9.76e-48 8.41e-45
28 MA0489.2 Jun MA0489.2 3.48e-46 3e-43
29 MA0676.1 Nr2e1 MA0676.1 5.04e-46 4.35e-43
30 MA0477.2 FOSL1 MA0477.2 1.82e-45 1.57e-42
31 MA0490.2 JUNB MA0490.2 1.6e-44 1.38e-41
32 MA0150.2 Nfe2l2 MA0150.2 2.85e-44 2.46e-41
33 MA0790.1 POU4F1 MA0790.1 2.93e-43 2.53e-40
34 MA0089.2 MAFG::NFE2L1 MA0089.2 1.08e-42 9.35e-40
35 MA1132.1 JUN::JUNB MA1132.1 9.99e-41 8.61e-38
36 MA0496.3 MAFK MA0496.3 3.04e-40 2.62e-37
38 MA0032.2 FOXC1 MA0032.2 5.27e-38 4.54e-35
39 MA0726.1 VSX2 MA0726.1 8.15e-38 7.02e-35
40 MA0792.1 POU5F1B MA0792.1 1.1e-37 9.49e-35
41 MA0789.1 POU3F4 MA0789.1 2.5e-37 2.16e-34
43 MA0845.1 FOXB1 MA0845.1 4.79e-37 4.13e-34
44 MA0084.1 SRY MA0084.1 9.84e-37 8.48e-34
45 MA0886.1 EMX2 MA0886.1 5.13e-36 4.43e-33
46 MA1104.2 GATA6 MA1104.2 7.95e-36 6.85e-33
47 MA0899.1 HOXA10 MA0899.1 1.31e-35 1.13e-32
48 MA0035.4 GATA1 MA0035.4 4.34e-35 3.74e-32
49 MA0793.1 POU6F2 MA0793.1 7.99e-35 6.89e-32
50 MA0791.1 POU4F3 MA0791.1 9.91e-35 8.54e-32
51 MA0037.4 Gata3 MA0037.4 2.98e-34 2.57e-31
52 MA1963.1 SATB1 MA1963.1 1.22e-33 1.05e-30
53 MA0675.1 NKX6-2 MA0675.1 1.38e-33 1.19e-30
54 MA0902.2 HOXB2 MA0902.2 1.71e-33 1.47e-30
55 MA0725.1 VSX1 MA0725.1 1.86e-33 1.61e-30
56 MA0704.1 Lhx4 MA0704.1 4.57e-33 3.94e-30
57 MA1639.1 MEIS1 MA1639.1 6.17e-33 5.31e-30
58 MA1481.1 DRGX MA1481.1 1.85e-32 1.59e-29
59 MA0681.2 PHOX2B MA0681.2 7.7e-32 6.64e-29
60 MA1530.1 NKX6-3 MA1530.1 8.12e-32 7e-29
61 MA0846.1 FOXC2 MA0846.1 8.18e-32 7.05e-29
62 MA0901.2 HOXB13 MA0901.2 1.29e-31 1.11e-28
63 MA0716.1 PRRX1 MA0716.1 2.6e-31 2.24e-28
64 MA0498.2 MEIS1 MA0498.2 2.72e-31 2.34e-28
65 MA0680.2 Pax7 MA0680.2 6.48e-31 5.59e-28
66 MA0630.1 SHOX MA0630.1 7.29e-31 6.29e-28
67 MA1563.2 SOX18 MA1563.2 7.48e-31 6.45e-28
68 MA1113.2 PBX2 MA1113.2 7.85e-31 6.76e-28
69 MA0720.1 Shox2 MA0720.1 1.86e-30 1.6e-27
70 MA0723.2 VAX2 MA0723.2 2.38e-30 2.06e-27
71 MA1640.1 MEIS2 MA1640.1 2.81e-30 2.42e-27
72 MA0027.2 EN1 MA0027.2 7.06e-30 6.09e-27
73 MA0707.2 MNX1 MA0707.2 7.48e-30 6.45e-27
74 MA0627.2 POU2F3 MA0627.2 1.31e-29 1.13e-26
75 MA0052.4 MEF2A MA0052.4 1.72e-29 1.49e-26
76 MA0601.1 Arid3b MA0601.1 2.64e-29 2.27e-26
77 MA0788.1 POU3F3 MA0788.1 4e-29 3.45e-26
78 MA1480.1 DPRX MA1480.1 4.03e-29 3.47e-26
79 MA0713.1 PHOX2A MA0713.1 6.93e-29 5.98e-26
80 MA0724.1 VENTX MA0724.1 1.05e-28 9.07e-26
81 MA1549.1 POU6F1 MA1549.1 1.1e-28 9.49e-26
82 MA0036.3 GATA2 MA0036.3 1.39e-28 1.19e-25
83 MA0650.3 Hoxa13 MA0650.3 2.09e-28 1.8e-25
84 MA1970.1 TRPS1 MA1970.1 4.14e-28 3.57e-25
85 MA0722.1 VAX1 MA0722.1 4.97e-28 4.28e-25
86 MA0785.1 POU2F1 MA0785.1 6.68e-28 5.75e-25
87 MA1471.1 BARX2 MA1471.1 7.28e-28 6.28e-25
88 MA1476.2 Dlx5 MA1476.2 9.51e-28 8.2e-25
89 MA1487.2 FOXE1 MA1487.2 1.59e-27 1.37e-24
90 MA0890.1 GBX2 MA0890.1 1.68e-27 1.45e-24
91 MA0482.2 GATA4 MA0482.2 2.26e-27 1.95e-24
92 MA0666.2 MSX1 MA0666.2 2.67e-27 2.3e-24
93 MA1502.1 HOXB8 MA1502.1 3.08e-27 2.66e-24
94 MA0708.2 MSX2 MA0708.2 5.31e-27 4.58e-24
95 MA0495.3 MAFF MA0495.3 5.64e-27 4.86e-24
96 MA0879.2 DLX1 MA0879.2 5.67e-27 4.88e-24
98 MA0125.1 Nobox MA0125.1 9.96e-27 8.59e-24
99 MA0654.1 ISX MA0654.1 1.79e-26 1.54e-23
100 MA0523.1 TCF7L2 MA0523.1 2.11e-26 1.82e-23
101 MA1152.1 SOX15 MA1152.1 2.89e-26 2.49e-23
102 MA0782.2 PKNOX1 MA0782.2 3.31e-26 2.85e-23
103 MA0881.1 Dlx4 MA0881.1 4.17e-26 3.6e-23
104 MA0644.2 ESX1 MA0644.2 8.15e-26 7.03e-23
105 MA0628.1 POU6F1 MA0628.1 8.69e-26 7.49e-23
106 MA1978.1 ZNF354A MA1978.1 1.72e-25 1.48e-22
107 MA0140.2 GATA1::TAL1 MA0140.2 1.79e-25 1.55e-22
108 MA0868.2 SOX8 MA0868.2 2.23e-25 1.92e-22
109 MA1495.1 HOXA1 MA1495.1 2.26e-25 1.95e-22
110 MA0876.1 BSX MA0876.1 2.36e-25 2.04e-22
111 MA0025.2 NFIL3 MA0025.2 2.47e-25 2.13e-22
112 MA0709.1 Msx3 MA0709.1 3.02e-25 2.6e-22
113 MA1607.1 Foxl2 MA1607.1 3.65e-25 3.15e-22
114 MA0041.2 FOXD3 MA0041.2 4.29e-25 3.7e-22
115 MA0679.2 ONECUT1 MA0679.2 4.31e-25 3.72e-22
116 MA0885.2 Dlx2 MA0885.2 6.01e-25 5.18e-22
117 MA0842.2 NRL MA0842.2 6.82e-25 5.88e-22
118 MA0031.1 FOXD1 MA0031.1 7.32e-25 6.31e-22
119 MA0721.1 UNCX MA0721.1 8.02e-25 6.91e-22
120 MA0880.1 Dlx3 MA0880.1 8.28e-25 7.14e-22
121 MA0875.1 BARX1 MA0875.1 8.42e-25 7.26e-22
122 MA0710.1 NOTO MA0710.1 1.01e-24 8.66e-22
123 MA0882.1 DLX6 MA0882.1 1.07e-24 9.18e-22
124 MA0705.1 Lhx8 MA0705.1 1.12e-24 9.67e-22
125 MA1606.1 Foxf1 MA1606.1 1.51e-24 1.3e-21
126 MA0602.1 Arid5a MA0602.1 1.59e-24 1.37e-21
127 MA0909.3 Hoxd13 MA0909.3 1.88e-24 1.62e-21
128 MA0142.1 Pou5f1::Sox2 MA0142.1 2.79e-24 2.41e-21
325 MA1973.1 (ZKSCAN3) MEME-3 TGTYGCCCAGGCTGG 9.74e-06 2.8e-21
129 MA1519.1 LHX5 MA1519.1 3.88e-24 3.34e-21
130 MA0047.3 FOXA2 MA0047.3 5.88e-24 5.07e-21
131 MA0700.2 LHX2 MA0700.2 6.7e-24 5.77e-21
132 MA0648.1 GSC MA0648.1 8.84e-24 7.62e-21
133 MA0481.3 FOXP1 MA0481.3 1.18e-23 1.02e-20
134 MA0682.2 PITX1 MA0682.2 1.63e-23 1.41e-20
135 MA0889.1 GBX1 MA0889.1 2.45e-23 2.11e-20
136 MA0910.2 HOXD8 MA0910.2 3.37e-23 2.9e-20
137 MA0903.1 HOXB3 MA0903.1 3.84e-23 3.31e-20
138 MA0635.1 BARHL2 MA0635.1 4.66e-23 4.01e-20
139 MA0674.1 NKX6-1 MA0674.1 5.88e-23 5.07e-20
140 MA0634.1 ALX3 MA0634.1 6.61e-23 5.7e-20
142 MA0787.1 POU3F2 MA0787.1 1.29e-22 1.11e-19
143 MA0658.1 LHX6 MA0658.1 1.34e-22 1.16e-19
144 MA0706.1 MEOX2 MA0706.1 1.77e-22 1.52e-19
145 MA0497.1 MEF2C MA0497.1 3.03e-22 2.61e-19
346 MA0682.2 (PITX1) MEME-4 WGCTGGGATTACAGG 0.000961 4.2e-19
146 MA0042.2 FOXI1 MA0042.2 5.8e-22 5e-19
147 MA0077.1 SOX9 MA0077.1 7.04e-22 6.07e-19
148 MA0612.2 EMX1 MA0612.2 1.33e-21 1.15e-18
149 MA1115.1 POU5F1 MA1115.1 1.67e-21 1.44e-18
151 MA0465.2 CDX2 MA0465.2 2.63e-21 2.27e-18
153 MA1603.1 Dmrt1 MA1603.1 3.18e-21 2.74e-18
154 MA0148.4 FOXA1 MA0148.4 3.72e-21 3.21e-18
155 MA0786.1 POU3F1 MA0786.1 4.04e-21 3.48e-18
156 MA1636.1 CEBPG MA1636.1 4.56e-21 3.93e-18
157 MA0718.1 RAX MA0718.1 9.15e-21 7.88e-18
158 MA0848.1 FOXO4 MA0848.1 9.71e-21 8.37e-18
159 MA0033.2 FOXL1 MA0033.2 1.54e-20 1.33e-17
160 MA0904.2 HOXB5 MA0904.2 1.87e-20 1.61e-17
161 MA1657.1 ZNF652 MA1657.1 3.73e-20 3.21e-17
162 MA0144.2 STAT3 MA0144.2 4.25e-20 3.66e-17
163 MA0018.4 CREB1 MA0018.4 5.76e-20 4.97e-17
164 MA0908.1 HOXD11 MA0908.1 6.06e-20 5.22e-17
165 MA0775.1 MEIS3 MA0775.1 8.53e-20 7.35e-17
166 MA0905.1 HOXC10 MA0905.1 2.07e-19 1.78e-16
167 MA1103.2 FOXK2 MA1103.2 2.2e-19 1.9e-16
168 MA0887.1 EVX1 MA0887.1 2.46e-19 2.12e-16
169 MA0070.1 PBX1 MA0070.1 2.94e-19 2.54e-16
170 MA0914.1 ISL2 MA0914.1 3.28e-19 2.83e-16
171 MA0143.4 SOX2 MA0143.4 3.51e-19 3.02e-16
172 MA0847.3 FOXD2 MA0847.3 3.54e-19 3.05e-16
173 MA1114.1 PBX3 MA1114.1 5.69e-19 4.91e-16
174 MA1498.2 HOXA7 MA1498.2 7.11e-19 6.13e-16
175 MA0717.1 RAX2 MA0717.1 8.84e-19 7.62e-16
176 MA1505.1 HOXC8 MA1505.1 1.03e-18 8.87e-16
177 MA0662.1 MIXL1 MA0662.1 1.18e-18 1.01e-15
178 MA0894.1 HESX1 MA0894.1 1.66e-18 1.43e-15
179 MA0117.2 Mafb MA0117.2 2e-18 1.72e-15
180 MA0442.2 SOX10 MA0442.2 2.13e-18 1.83e-15
181 MA0892.1 GSX1 MA0892.1 4.25e-18 3.66e-15
182 MA0701.2 LHX9 MA0701.2 5.01e-18 4.32e-15
183 MA1120.1 SOX13 MA1120.1 5.15e-18 4.44e-15
184 MA0492.1 JUND MA0492.1 5.25e-18 4.53e-15
185 MA1632.1 ATF2 MA1632.1 6.18e-18 5.33e-15
186 MA0068.2 PAX4 MA0068.2 9.35e-18 8.06e-15
187 MA1960.1 MGA::EVX1 MA1960.1 1.16e-17 9.98e-15
188 MA0891.1 GSC2 MA0891.1 2.01e-17 1.74e-14
189 MA1683.1 FOXA3 MA1683.1 2.18e-17 1.88e-14
190 MA0774.1 MEIS2 MA0774.1 3.03e-17 2.61e-14
191 MA0699.1 LBX2 MA0699.1 3.12e-17 2.69e-14
192 MA0642.2 EN2 MA0642.2 4.21e-17 3.63e-14
193 MA0151.1 Arid3a MA0151.1 6.05e-17 5.21e-14
194 MA0124.2 Nkx3-1 MA0124.2 1.15e-16 9.92e-14
195 MA0895.1 HMBOX1 MA0895.1 1.21e-16 1.04e-13
196 MA1463.1 ARGFX MA1463.1 1.49e-16 1.28e-13
197 MA0488.1 JUN MA0488.1 2.37e-16 2.04e-13
198 MA0108.2 TBP MA0108.2 3.04e-16 2.62e-13
199 MA0122.3 Nkx3-2 MA0122.3 3.06e-16 2.64e-13
200 MA1497.1 HOXA6 MA1497.1 3.61e-16 3.11e-13
201 MA0769.2 TCF7 MA0769.2 6.71e-16 5.78e-13
202 MA0797.1 TGIF2 MA0797.1 1.61e-15 1.39e-12
203 MA0102.4 CEBPA MA0102.4 1.61e-15 1.39e-12
205 MA0711.1 OTX1 MA0711.1 4.57e-15 3.94e-12
206 MA0829.2 SREBF1 MA0829.2 5.73e-15 4.94e-12
207 MA1720.1 ZNF85 MA1720.1 6.66e-15 5.74e-12
208 MA1489.1 FOXN3 MA1489.1 6.73e-15 5.8e-12
209 MA0157.3 Foxo3 MA0157.3 6.91e-15 5.96e-12
210 MA0851.1 Foxj3 MA0851.1 1.39e-14 1.2e-11
211 MA0712.2 OTX2 MA0712.2 1.53e-14 1.32e-11
212 MA1499.1 HOXB4 MA1499.1 1.63e-14 1.4e-11
213 MA0913.2 HOXD9 MA0913.2 1.98e-14 1.7e-11
214 MA0833.2 ATF4 MA0833.2 2.18e-14 1.88e-11
215 MA0661.1 MEOX1 MA0661.1 4.08e-14 3.52e-11
216 MA0912.2 HOXD3 MA0912.2 4.79e-14 4.13e-11
217 MA0063.2 NKX2-5 MA0063.2 6.56e-14 5.65e-11
218 MA1124.1 ZNF24 MA1124.1 7.57e-14 6.52e-11
219 MA0596.1 SREBF2 MA0596.1 8.72e-14 7.52e-11
220 MA0659.3 Mafg MA0659.3 9.98e-14 8.6e-11
221 MA0911.1 Hoxa11 MA0911.1 1.04e-13 8.98e-11
222 MA0029.1 Mecom MA0029.1 1.24e-13 1.06e-10
223 MA0900.2 HOXA2 MA0900.2 1.75e-13 1.51e-10
224 MA0611.2 Dux MA0611.2 1.99e-13 1.71e-10
225 MA1504.1 HOXC4 MA1504.1 2.59e-13 2.24e-10
226 MA1518.2 Lhx1 MA1518.2 2.78e-13 2.4e-10
227 MA1110.2 Nr1H4 MA1110.2 2.78e-13 2.4e-10
228 MA0867.2 SOX4 MA0867.2 4.35e-13 3.75e-10
229 MA0805.1 TBX1 MA0805.1 4.68e-13 4.03e-10
230 MA1623.1 Stat2 MA1623.1 9.21e-13 7.94e-10
231 MA0888.1 EVX2 MA0888.1 9.28e-13 8e-10
232 MA0483.1 Gfi1B MA0483.1 9.97e-13 8.59e-10
233 MA1608.1 Isl1 MA1608.1 1.13e-12 9.73e-10
234 MA0050.3 Irf1 MA0050.3 1.25e-12 1.08e-09
235 MA1479.1 DMRTC2 MA1479.1 1.29e-12 1.11e-09
236 MA0613.1 FOXG1 MA0613.1 1.68e-12 1.45e-09
237 MA0768.2 Lef1 MA0768.2 1.82e-12 1.57e-09
238 MA0715.1 PROP1 MA0715.1 2.14e-12 1.84e-09
240 MA0898.1 Hmx3 MA0898.1 4.47e-12 3.85e-09
241 MA0153.2 HNF1B MA0153.2 5.13e-12 4.42e-09
242 MA0624.2 Nfatc1 MA0624.2 5.18e-12 4.46e-09
243 MA0714.1 PITX3 MA0714.1 5.24e-12 4.52e-09
244 MA1991.1 Hnf1A MA1991.1 8.04e-12 6.93e-09
245 MA1593.1 ZNF317 MA1593.1 1.29e-11 1.11e-08
246 MA0095.3 Yy1 MA0095.3 1.36e-11 1.17e-08
248 MA1571.1 TGIF2LX MA1571.1 1.62e-11 1.39e-08
249 MA0606.2 Nfat5 MA0606.2 1.65e-11 1.42e-08
250 MA0691.1 TFAP4 MA0691.1 1.69e-11 1.46e-08
251 MA0480.2 Foxo1 MA0480.2 1.97e-11 1.69e-08
252 MA1501.1 HOXB7 MA1501.1 2.13e-11 1.83e-08
253 MA0850.1 FOXP3 MA0850.1 2.71e-11 2.34e-08
254 MA0078.2 Sox17 MA0078.2 2.8e-11 2.41e-08
255 MA1131.1 FOSL2::JUN MA1131.1 3.55e-11 3.06e-08
256 MA1496.1 HOXA4 MA1496.1 4.5e-11 3.88e-08
257 MA1643.1 NFIB MA1643.1 8.77e-11 7.56e-08
258 MA1127.1 FOSB::JUN MA1127.1 9.42e-11 8.12e-08
259 MA0755.1 CUX2 MA0755.1 9.63e-11 8.31e-08
260 MA0090.3 TEAD1 MA0090.3 9.65e-11 8.32e-08
261 MA0803.1 TBX15 MA0803.1 1.06e-10 9.1e-08
262 MA0119.1 NFIC::TLX1 MA0119.1 1.08e-10 9.31e-08
20 MA1928.1 (BNC2) STREME-1 1-VTGASTCAB 2.84e-56 9.51e-08
263 MA0071.1 RORA MA0071.1 1.17e-10 1.01e-07
17 MA0037.4 (Gata3) STREME-2 2-CAGATAA 1.53e-59 1.46e-07
264 MA1500.1 HOXB6 MA1500.1 2.15e-10 1.86e-07
265 MA0017.2 NR2F1 MA0017.2 2.25e-10 1.94e-07
266 MA1527.1 NFIC MA1527.1 2.63e-10 2.27e-07
267 MA1139.1 FOSL2::JUNB MA1139.1 3.28e-10 2.83e-07
268 MA0046.2 HNF1A MA0046.2 3.88e-10 3.34e-07
269 MA0618.1 LBX1 MA0618.1 4.19e-10 3.62e-07
270 MA0893.2 GSX2 MA0893.2 7.14e-10 6.15e-07
271 MA0614.1 Foxj2 MA0614.1 1.01e-09 8.75e-07
272 MA0631.1 Six3 MA0631.1 1.3e-09 1.12e-06
37 MA1991.1 (Hnf1A) STREME-3 3-ATCAAA 3.24e-38 1.27e-06
273 MA0591.1 Bach1::Mafk MA0591.1 1.48e-09 1.27e-06
274 MA1119.1 SIX2 MA1119.1 2.16e-09 1.86e-06
275 MA1112.2 NR4A1 MA1112.2 2.33e-09 2.01e-06
276 MA1105.2 GRHL2 MA1105.2 2.47e-09 2.13e-06
278 MA1528.1 NFIX MA1528.1 4.03e-09 3.47e-06
279 MA1118.1 SIX1 MA1118.1 7.73e-09 6.66e-06
280 MA0896.1 Hmx1 MA0896.1 9.92e-09 8.55e-06
281 MA0689.1 TBX20 MA0689.1 2.06e-08 1.78e-05
282 MA0093.3 USF1 MA0093.3 4.41e-08 3.8e-05
283 MA1111.1 NR2F2 MA1111.1 4.74e-08 4.08e-05
284 MA0152.2 Nfatc2 MA0152.2 5.3e-08 4.57e-05
285 MA0849.1 FOXO6 MA0849.1 5.75e-08 4.95e-05
286 MA0673.1 NKX2-8 MA0673.1 5.96e-08 5.13e-05
287 MA0468.1 DUX4 MA0468.1 6.85e-08 5.9e-05
288 MA1145.1 FOSL2::JUND MA1145.1 6.91e-08 5.96e-05
289 MA1143.1 FOSL1::JUND MA1143.1 7.09e-08 6.11e-05
290 MA0877.3 BARHL1 MA0877.3 1.04e-07 8.95e-05
291 MA0836.2 CEBPD MA0836.2 1.25e-07 0.000108
292 MA0854.1 Alx1 MA0854.1 1.38e-07 0.000119
294 MA1709.1 ZIM3 MA1709.1 1.6e-07 0.000138
295 MA1562.1 SOX14 MA1562.1 1.61e-07 0.000139
296 MA0038.2 GFI1 MA0038.2 1.75e-07 0.000151
297 MA1126.1 FOS::JUN MA1126.1 2.52e-07 0.000218
298 MA1567.2 Tbx6 MA1567.2 3.97e-07 0.000342
299 MA0807.1 TBX5 MA0807.1 4.91e-07 0.000423
300 MA0629.1 Rhox11 MA0629.1 5.44e-07 0.000469
301 MA1707.1 DMRTA1 MA1707.1 6.38e-07 0.00055
239 4-CAGTGAGCTG STREME-4 4-CAGTGAGCTG 2.31e-12 0.000572
302 MA0853.1 Alx4 MA0853.1 7.61e-07 0.000656
303 MA1644.1 NFYC MA1644.1 8.44e-07 0.000728
304 MA1478.1 DMRTA2 MA1478.1 9.72e-07 0.000837
314 MA1627.1 (Wt1) MEME-5 CCCCWCCCCCMMNCC 4.21e-06 0.00089
305 MA0883.1 Dmbx1 MA0883.1 1.11e-06 0.000957
306 MA0783.1 PKNOX2 MA0783.1 1.13e-06 0.000978
307 MA0087.2 Sox5 MA0087.2 1.15e-06 0.000992
308 MA0831.3 TFE3 MA0831.3 1.38e-06 0.00119
25 MA0498.2 (MEIS1) STREME-5 5-CTGWCAG 2.54e-51 0.00153
309 MA0809.2 TEAD4 MA0809.2 2.22e-06 0.00191
310 MA0698.1 ZBTB18 MA0698.1 2.59e-06 0.00223
311 MA2003.1 NKX2-4 MA2003.1 2.6e-06 0.00224
312 MA0595.1 SREBF1 MA0595.1 2.66e-06 0.00229
313 MA0092.1 Hand1::Tcf3 MA0092.1 2.83e-06 0.00244
315 MA0693.3 Vdr MA0693.3 4.56e-06 0.00393
316 MA0620.3 MITF MA0620.3 4.87e-06 0.0042
317 MA1150.1 RORB MA1150.1 5.78e-06 0.00498
141 6-AGAAAA STREME-6 6-AGAAAA 1.07e-22 0.00522
318 MA1618.1 Ptf1a MA1618.1 6.12e-06 0.00528
319 MA0780.1 PAX3 MA0780.1 6.23e-06 0.00537
204 MA1627.1 (Wt1) STREME-7 7-CCTCCCCCA 1.89e-15 0.00542
320 MA0141.3 ESRRB MA0141.3 6.98e-06 0.00602
321 MA0840.1 Creb5 MA0840.1 7.46e-06 0.00643
322 MA0684.2 RUNX3 MA0684.2 8.09e-06 0.00697
323 MA1962.1 POU2F1::SOX2 MA1962.1 8.72e-06 0.00751
324 MA0852.2 FOXK1 MA0852.2 9.22e-06 0.00795
326 MA0672.1 NKX2-3 MA0672.1 1.06e-05 0.00911
277 8-TRATYA STREME-8 8-TRATYA 2.97e-09 0.00982
328 MA1974.1 ZNF211 MA1974.1 1.3e-05 0.0112
329 MA0514.2 Sox3 MA0514.2 1.31e-05 0.0113
330 MA0610.1 DMRT3 MA0610.1 1.36e-05 0.0118
331 MA0599.1 KLF5 MA0599.1 1.49e-05 0.0128
332 MA1507.1 HOXD4 MA1507.1 1.55e-05 0.0134
333 MA0806.1 TBX4 MA0806.1 1.69e-05 0.0145
334 MA0467.2 Crx MA0467.2 2.18e-05 0.0188
335 MA0656.1 JDP2 MA0656.1 2.21e-05 0.019
336 MA0132.2 PDX1 MA0132.2 2.26e-05 0.0195
337 MA0796.1 TGIF1 MA0796.1 2.78e-05 0.0239
338 MA0623.2 NEUROG1 MA0623.2 3e-05 0.0259
339 MA1980.1 ZNF418 MA1980.1 3.21e-05 0.0277
327 MA1125.1 (ZNF384) MEME-6 YCTGTCTCAAAAMAA 1.28e-05 0.029
340 MA0688.1 TBX2 MA0688.1 3.43e-05 0.0295
341 MA1645.1 NKX2-2 MA1645.1 3.51e-05 0.0303
247 9-AATGTA STREME-9 9-AATGTA 1.54e-11 0.0319
293 MA0592.3 (ESRRA) STREME-10 10-AGGTCA 1.43e-07 0.0319
347 MA1715.1 (ZNF707) STREME-11 11-GCCCAGCTCCTGA 0.0711 0.0335
42 MA1633.2 (BACH1) STREME-12 12-AGTCAT 3.45e-37 0.037
342 MA1570.1 TFAP4 MA1570.1 4.71e-05 0.0406
343 MA0802.1 TBR1 MA0802.1 4.76e-05 0.0411
344 MA1503.1 HOXB9 MA1503.1 5.28e-05 0.0455
97 MA1632.1 (ATF2) STREME-13 13-ATGAGGTR 6.8e-27 0.0712
152 14-AAGATG STREME-14 14-AAGATG 2.71e-21 0.0738
150 MA1657.1 (ZNF652) STREME-15 15-AGAGTT 2.54e-21 0.128

ESR lists

# ESR_open_xstreme %>% 
#  dplyr::select(RANK,SIM_MOTIF,ALT_ID, ID,SEA_PVALUE,EVALUE) %>% 
#    arrange(.,EVALUE) %>% 
#    dplyr::mutate_if(is.numeric, funs(as.character(signif(., 3)))) %>%
#   # separate(SIM_MOTIF, into= c("SIM_MOTIF", "NAME"), sep= " ") %>% 
#   # dplyr::filter(., EVALUE<0.05) %>% 
#   dplyr::mutate_if(is.numeric, funs(as.character(signif(., 3)))) %>%
#   kable(., caption = "Enriched motifs in ESR open") %>%
#   kable_paper("striped", full_width = TRUE) %>%
#   kable_styling(full_width = FALSE, font_size = 16) %>%
#   scroll_box(height = "800px")

ESR_open_200xstreme %>% 
 dplyr::select(RANK,SIM_MOTIF,ALT_ID, ID,SEA_PVALUE,EVALUE) %>% 
   arrange(.,EVALUE) %>% 
   dplyr::mutate_if(is.numeric, funs(as.character(signif(., 3)))) %>%
  # separate(SIM_MOTIF, into= c("SIM_MOTIF", "NAME"), sep= " ") %>% 
  # dplyr::filter(., EVALUE<0.05) %>% 
  dplyr::mutate_if(is.numeric, funs(as.character(signif(., 3)))) %>%
  kable(., caption = "Enriched motifs in ESR open, 200bp") %>%
  kable_paper("striped", full_width = TRUE) %>%
  kable_styling(full_width = FALSE, font_size = 16) %>%
  scroll_box(height = "800px")
Enriched motifs in ESR open, 200bp
RANK SIM_MOTIF ALT_ID ID SEA_PVALUE EVALUE
16 MA0490.2 JUNB MA0490.2 3.44e-109 3e-106
3 GTGTGTGTGTGTGTG MEME-1 GTGTGTGTGTGTGTG 4.65e-124 5e-101
18 MA0491.2 JUND MA0491.2 1.66e-100 1.45e-97
19 MA1128.1 FOSL1::JUN MA1128.1 2.7e-100 2.36e-97
20 MA0099.3 FOS::JUN MA0099.3 1.43e-99 1.25e-96
22 MA0477.2 FOSL1 MA0477.2 3.12e-98 2.73e-95
23 MA1144.1 FOSL2::JUND MA1144.1 7.01e-98 6.13e-95
24 MA0655.1 JDP2 MA0655.1 1.4e-95 1.22e-92
25 MA1138.1 FOSL2::JUNB MA1138.1 1.5e-95 1.31e-92
26 MA1142.1 FOSL1::JUND MA1142.1 2.53e-94 2.21e-91
27 MA1135.1 FOSB::JUNB MA1135.1 1.2e-92 1.05e-89
29 MA1137.1 FOSL1::JUNB MA1137.1 1.57e-89 1.37e-86
30 MA1988.1 Atf3 MA1988.1 7.68e-88 6.71e-85
32 MA1141.1 FOS::JUND MA1141.1 1.73e-86 1.51e-83
34 MA0476.1 FOS MA0476.1 1.87e-85 1.63e-82
35 MA1633.2 BACH1 MA1633.2 1.23e-84 1.08e-81
36 MA1130.1 FOSL2::JUN MA1130.1 6.65e-82 5.81e-79
37 MA0841.1 NFE2 MA0841.1 4.39e-81 3.84e-78
38 MA0835.2 BATF3 MA0835.2 4.69e-79 4.1e-76
39 MA1134.1 FOS::JUNB MA1134.1 9.62e-79 8.41e-76
40 MA1101.2 BACH2 MA1101.2 2e-74 1.75e-71
41 MA1132.1 JUN::JUNB MA1132.1 7.45e-73 6.51e-70
42 MA1634.1 BATF MA1634.1 8.57e-68 7.5e-65
43 MA0489.2 Jun MA0489.2 3.62e-67 3.16e-64
44 MA1155.1 ZSCAN4 MA1155.1 2e-66 1.75e-63
45 MA0861.1 TP73 MA0861.1 8.68e-66 7.58e-63
46 MA0106.3 TP53 MA0106.3 1.28e-65 1.12e-62
47 MA0462.2 BATF::JUN MA0462.2 1.39e-65 1.22e-62
48 MA0478.1 FOSL2 MA0478.1 3.93e-64 3.43e-61
126 MA1125.1 (ZNF384) MEME-2 WWTTTTTKTWTTTTT 0.00125 5.3e-48
17 TGTGTRTGTGT MEME-3 TGTGTRTGTGT 2.04e-106 4.2e-44
50 MA0073.1 RREB1 MA0073.1 5.61e-42 4.9e-39
51 MA0525.2 TP63 MA0525.2 8.72e-39 7.62e-36
88 MA1547.2 (PITX2) MEME-4 AAAGTGCTGGGATTA 2.62e-08 1.9e-34
53 MA1108.2 MXI1 MA1108.2 4.61e-35 4.03e-32
55 MA1928.1 BNC2 MA1928.1 3.12e-34 2.73e-31
56 MA0006.1 Ahr::Arnt MA0006.1 7.06e-34 6.17e-31
95 MA1596.1 (ZNF460) MEME-6 GGGAGGCYGAGGYRG 1.34e-07 2.5e-27
127 MA1973.1 (ZKSCAN3) MEME-10 TGTTGCCCAGGCTGG 0.00163 3.9e-24
125 GAGACRGRGTYTCRC MEME-11 GAGACRGRGTYTCRC 0.000286 2.3e-23
57 MA0089.2 MAFG::NFE2L1 MA0089.2 2.88e-24 2.52e-21
58 MA0819.2 CLOCK MA0819.2 1.17e-22 1.02e-19
59 MA0623.2 NEUROG1 MA0623.2 1.8e-21 1.57e-18
60 MA1974.1 ZNF211 MA1974.1 2.95e-21 2.58e-18
61 MA0259.1 ARNT::HIF1A MA0259.1 2e-20 1.75e-17
12 MA1107.2 (KLF9) MEME-7 GTRTGTGTGTG 1.21e-115 3.1e-17
62 MA1718.1 ZNF8 MA1718.1 1.09e-19 9.49e-17
63 MA0501.1 MAF::NFE2 MA0501.1 1.7e-18 1.49e-15
64 MA0626.1 Npas2 MA0626.1 2.84e-18 2.48e-15
9 TGTGTGTRTGTGTGT MEME-13 TGTGTGTRTGTGTGT 2.59e-117 8e-15
2 TGTGTGYRTGTGTG MEME-8 TGTGTGYRTGTGTG 1.63e-128 4e-14
28 MA1107.2 (KLF9) MEME-9 TGTGTGTGTGTRTG 1.7e-92 6.6e-14
7 MA1107.2 (KLF9) STREME-1 1-CACACACACACAC 1.04e-118 3.08e-13
33 2-CACACACACATRCAC STREME-2 2-CACACACACATRCAC 4.87e-86 1.19e-12
66 MA0496.3 MAFK MA0496.3 7.51e-15 6.56e-12
67 MA0678.1 OLIG2 MA0678.1 1.13e-14 9.86e-12
11 MA1107.2 (KLF9) STREME-3 3-CACACACACACAD 6.75e-116 1.19e-10
68 MA0058.3 MAX MA0058.3 1.53e-13 1.33e-10
21 4-CACACAYGCAC STREME-4 4-CACACAYGCAC 2.38e-98 2.83e-10
10 MA1107.2 (KLF9) MEME-5 ACACABACAYACA 5.94e-117 5e-10
4 MA1155.1 (ZSCAN4) MEME-17 TGTGTRTGTGTGTG 1.09e-119 7.8e-10
8 MA1990.1 (Gli1) STREME-5 5-CACACACCACACACA 3.91e-118 7.98e-10
69 MA1107.2 KLF9 MA1107.2 1.03e-12 9.03e-10
70 MA0622.1 Mlxip MA0622.1 1.53e-12 1.34e-09
71 MA0817.1 BHLHE23 MA0817.1 1.82e-12 1.59e-09
15 MA0491.2 (JUND) STREME-6 6-RATGASTCATY 1.04e-110 2.26e-09
1 7-CACACATACACAC STREME-7 7-CACACATACACAC 2.85e-143 3.25e-09
72 MA0147.3 MYC MA0147.3 1.07e-11 9.33e-09
73 MA0849.1 FOXO6 MA0849.1 1.43e-11 1.25e-08
74 MA0818.2 BHLHE22 MA0818.2 1.58e-11 1.38e-08
76 MA1124.1 ZNF24 MA1124.1 3.75e-11 3.28e-08
77 MA0825.1 MNT MA0825.1 4.4e-11 3.85e-08
78 MA1560.1 SOHLH2 MA1560.1 5.35e-11 4.68e-08
75 YGCCTGTARTCCCAG MEME-15 YGCCTGTARTCCCAG 2.71e-11 9.9e-08
79 MA1493.1 HES6 MA1493.1 1.41e-10 1.23e-07
6 TGTGTGGTGTGTGTG MEME-12 TGTGTGGTGTGTGTG 5.3e-119 1.6e-07
80 MA0059.1 MAX::MYC MA0059.1 2.88e-10 2.52e-07
81 MA0608.1 Creb3l2 MA0608.1 4.21e-10 3.68e-07
82 MA0607.2 BHLHA15 MA0607.2 4.67e-10 4.08e-07
83 MA0150.2 Nfe2l2 MA0150.2 9.13e-10 7.98e-07
84 MA0804.1 TBX19 MA0804.1 2.58e-09 2.26e-06
13 8-CAYRCACAC STREME-8 8-CAYRCACAC 2.99e-114 3.22e-06
85 MA0827.1 OLIG3 MA0827.1 5.24e-09 4.58e-06
86 MA1606.1 Foxf1 MA1606.1 1.85e-08 1.62e-05
87 MA1464.1 ARNT2 MA1464.1 2.12e-08 1.86e-05
89 MA0689.1 TBX20 MA0689.1 3.09e-08 2.7e-05
90 MA0826.1 OLIG1 MA0826.1 4.67e-08 4.08e-05
92 MA0004.1 Arnt MA0004.1 5.2e-08 4.55e-05
31 MA1974.1 (ZNF211) STREME-9 9-MCACACACCACAC 5.48e-87 5.64e-05
93 MA0162.4 EGR1 MA0162.4 7.58e-08 6.63e-05
5 GTGTGTATGTGTG MEME-14 GTGTGTATGTGTG 2.89e-119 7.1e-05
94 MA1106.1 HIF1A MA1106.1 8.34e-08 7.29e-05
96 MA0649.1 HEY2 MA0649.1 1.44e-07 0.000126
97 MA0871.2 TFEC MA0871.2 1.52e-07 0.000133
98 MA1487.2 FOXE1 MA1487.2 1.59e-07 0.000139
99 MA0627.2 POU2F3 MA0627.2 1.87e-07 0.000163
100 MA0472.2 EGR2 MA0472.2 2.1e-07 0.000184
101 MA0047.3 FOXA2 MA0047.3 2.4e-07 0.00021
102 MA1990.1 Gli1 MA1990.1 3.8e-07 0.000332
104 MA1559.1 SNAI3 MA1559.1 8.67e-07 0.000758
129 TGTGTGGTGTGTGTG MEME-16 TGTGTGGTGTGTGTG 2.72 0.00077
105 MA0823.1 HEY1 MA0823.1 1.03e-06 9e-04
14 10-ATGTGTGTG STREME-10 10-ATGTGTGTG 7.72e-113 0.00165
106 MA1103.2 FOXK2 MA1103.2 2.06e-06 0.0018
107 MA1115.1 POU5F1 MA1115.1 2.31e-06 0.00202
108 MA0464.2 BHLHE40 MA0464.2 2.53e-06 0.00221
109 MA0616.2 HES2 MA0616.2 2.73e-06 0.00239
110 MA0836.2 CEBPD MA0836.2 3.47e-06 0.00304
111 MA0033.2 FOXL1 MA0033.2 3.88e-06 0.00339
52 MA1108.2 (MXI1) STREME-11 11-TACACATG 1.09e-35 0.00484
112 MA0698.1 ZBTB18 MA0698.1 6.68e-06 0.00584
113 MA1618.1 Ptf1a MA1618.1 1.15e-05 0.0101
114 MA0461.2 Atoh1 MA0461.2 1.3e-05 0.0113
115 MA0030.1 FOXF2 MA0030.1 1.41e-05 0.0123
116 MA0847.3 FOXD2 MA0847.3 1.44e-05 0.0126
117 MA0632.2 TCFL5 MA0632.2 1.79e-05 0.0156
118 MA1491.2 GLI3 MA1491.2 1.98e-05 0.0173
119 MA0615.1 Gmeb1 MA0615.1 2.43e-05 0.0213
120 MA0845.1 FOXB1 MA0845.1 2.78e-05 0.0243
121 MA0148.4 FOXA1 MA0148.4 4.09e-05 0.0357
122 MA0009.2 TBXT MA0009.2 4.17e-05 0.0364
123 MA0646.1 GCM1 MA0646.1 4.65e-05 0.0406
124 MA0733.1 EGR4 MA0733.1 5.68e-05 0.0496
91 12-CGAGTGATCCGCC STREME-12 12-CGAGTGATCCGCC 4.76e-08 0.0562
54 13-ACACAGG STREME-13 13-ACACAGG 9.1e-35 0.0565
49 14-ACACAY STREME-14 14-ACACAY 4.01e-43 0.0572
65 MA1601.2 (ZNF75D) STREME-15 15-GGCATGCCCACAGT 1.9e-16 4.36
128 MA0052.4 (MEF2A) STREME-16 16-TATTTTTAGWA 0.00293 6.41
103 MA1964.1 (SMAD2) STREME-17 17-CCCGTCTGGGAAGT 6.42e-07 17
# ESR_close_xstreme %>% 
#   dplyr::select(RANK,SIM_MOTIF,ALT_ID, ID,SEA_PVALUE,EVALUE) %>% 
#   arrange(.,EVALUE) %>%
#    dplyr::mutate_if(is.numeric, funs(as.character(signif(., 3)))) %>%
#   # separate(SIM_MOTIF, into= c("SIM_MOTIF", "NAME"), sep= " ") %>% 
#   # dplyr::filter(., EVALUE<0.05) %>% 
#   kable(., caption = "Enriched motifs  ESR close") %>%
#   kable_paper("striped", full_width = TRUE) %>%
#   kable_styling(full_width = FALSE, font_size = 16) %>%
#   scroll_box(height = "800px")

ESR_close_200xstreme %>% 
  dplyr::select(RANK,SIM_MOTIF,ALT_ID, ID,SEA_PVALUE,EVALUE) %>% 
  arrange(.,EVALUE) %>%
   dplyr::mutate_if(is.numeric, funs(as.character(signif(., 3)))) %>%
  # separate(SIM_MOTIF, into= c("SIM_MOTIF", "NAME"), sep= " ") %>% 
  # dplyr::filter(., EVALUE<0.05) %>% 
  kable(., caption = "Enriched motifs  ESR close 200bp") %>%
  kable_paper("striped", full_width = TRUE) %>%
  kable_styling(full_width = FALSE, font_size = 16) %>%
  scroll_box(height = "800px")
Enriched motifs ESR close 200bp
RANK SIM_MOTIF ALT_ID ID SEA_PVALUE EVALUE
48 MA1723.1 (PRDM9) MEME-1 YCCCYMHYCCCWSCY 6.89e-56 6.6e-96
10 MA1653.1 ZNF148 MA1653.1 5.37e-97 4.67e-94
11 MA0774.1 MEIS2 MA0774.1 1.53e-96 1.33e-93
13 MA1961.1 PATZ1 MA1961.1 1.85e-89 1.6e-86
14 MA1959.1 KLF7 MA1959.1 4.84e-89 4.2e-86
15 MA1630.2 ZNF281 MA1630.2 1.63e-87 1.42e-84
16 MA0742.2 KLF12 MA0742.2 1.32e-86 1.14e-83
18 MA0493.2 KLF1 MA0493.2 4.38e-86 3.8e-83
20 MA1511.2 KLF10 MA1511.2 9.52e-85 8.26e-82
21 MA0685.2 SP4 MA0685.2 1.29e-83 1.12e-80
23 MA0599.1 KLF5 MA0599.1 7.72e-79 6.7e-76
24 MA1643.1 NFIB MA1643.1 1.72e-78 1.49e-75
25 MA1522.1 MAZ MA1522.1 3.2e-78 2.78e-75
26 MA0740.2 KLF14 MA0740.2 3.33e-78 2.89e-75
27 MA0753.2 ZNF740 MA0753.2 2.09e-77 1.81e-74
28 MA0079.5 SP1 MA0079.5 5.56e-77 4.83e-74
29 MA1965.1 SP5 MA1965.1 6.63e-75 5.76e-72
30 MA0741.1 KLF16 MA0741.1 4.79e-71 4.16e-68
31 MA0516.3 SP2 MA0516.3 1.55e-69 1.35e-66
32 MA0746.2 SP3 MA0746.2 6.08e-69 5.27e-66
33 MA0119.1 NFIC::TLX1 MA0119.1 3.72e-68 3.23e-65
34 MA1981.1 ZNF530 MA1981.1 4.54e-67 3.94e-64
35 MA1650.1 ZBTB14 MA1650.1 4.63e-67 4.02e-64
37 MA1527.1 NFIC MA1527.1 3.5e-65 3.04e-62
38 MA0162.4 EGR1 MA0162.4 1.69e-64 1.47e-61
39 MA1528.1 NFIX MA1528.1 3.94e-64 3.43e-61
40 MA1713.1 ZNF610 MA1713.1 1.51e-63 1.31e-60
41 MA1564.1 SP9 MA1564.1 5.21e-63 4.52e-60
42 MA1512.1 KLF11 MA1512.1 3.15e-61 2.73e-58
45 MA1548.1 PLAGL2 MA1548.1 1.17e-58 1.01e-55
47 MA1578.1 VEZF1 MA1578.1 2.76e-58 2.39e-55
50 MA1627.1 Wt1 MA1627.1 1.11e-54 9.64e-52
51 MA0597.2 THAP1 MA0597.2 8.31e-54 7.21e-51
52 MA1515.1 KLF2 MA1515.1 5.35e-52 4.64e-49
53 MA1102.2 CTCFL MA1102.2 2.28e-51 1.98e-48
54 MA1615.1 Plagl1 MA1615.1 2.09e-49 1.81e-46
55 MA1514.1 KLF17 MA1514.1 2.12e-46 1.84e-43
56 MA0039.4 KLF4 MA0039.4 4.92e-46 4.27e-43
57 MA0155.1 INSM1 MA0155.1 1.28e-45 1.11e-42
58 MA0775.1 MEIS3 MA0775.1 1.89e-45 1.64e-42
59 MA1107.2 KLF9 MA1107.2 2.8e-45 2.43e-42
96 MA1723.1 (PRDM9) MEME-2 GGSAGRRGSARGGRS 5.41e-27 3.5e-42
60 MA1976.1 ZNF320 MA1976.1 5.63e-45 4.89e-42
61 MA1599.1 ZNF682 MA1599.1 9.56e-44 8.29e-41
63 MA1986.1 ZNF692 MA1986.1 3.32e-43 2.88e-40
64 MA0810.1 TFAP2A MA0810.1 3.79e-43 3.29e-40
65 MA0672.1 NKX2-3 MA0672.1 4.82e-41 4.18e-38
66 MA1631.1 ASCL1 MA1631.1 7.2e-40 6.25e-37
67 MA1596.1 ZNF460 MA1596.1 9.04e-40 7.84e-37
68 MA1712.1 ZNF454 MA1712.1 2.06e-39 1.79e-36
69 MA0146.2 Zfx MA0146.2 2.86e-39 2.48e-36
70 MA1516.1 KLF3 MA1516.1 4.56e-36 3.96e-33
71 MA0739.1 Hic1 MA0739.1 6.33e-36 5.49e-33
72 MA0633.2 Twist2 MA0633.2 1.4e-35 1.21e-32
73 MA0747.1 SP8 MA0747.1 1.84e-35 1.6e-32
74 MA2003.1 NKX2-4 MA2003.1 9.66e-35 8.38e-32
75 MA1997.1 Olig2 MA1997.1 1.99e-34 1.73e-31
76 MA0131.2 HINFP MA0131.2 9.49e-34 8.24e-31
77 MA1719.1 ZNF816 MA1719.1 4.66e-33 4.04e-30
78 MA0504.1 NR2C2 MA0504.1 2.14e-32 1.86e-29
79 MA0797.1 TGIF2 MA0797.1 3.25e-32 2.82e-29
80 MA0830.2 TCF4 MA0830.2 5.64e-32 4.9e-29
81 MA1993.1 Neurod2 MA1993.1 1.08e-31 9.35e-29
82 MA1723.1 PRDM9 MA1723.1 1.3e-31 1.13e-28
83 MA1721.1 ZNF93 MA1721.1 2.53e-31 2.19e-28
84 MA0522.3 TCF3 MA0522.3 2.9e-31 2.51e-28
85 MA0528.2 ZNF263 MA0528.2 3.11e-31 2.7e-28
86 MA0471.2 E2F6 MA0471.2 7.3e-31 6.34e-28
87 MA0498.2 MEIS1 MA0498.2 1.66e-30 1.44e-27
88 MA0524.2 TFAP2C MA0524.2 2.38e-30 2.07e-27
89 MA1710.1 ZNF257 MA1710.1 3.01e-30 2.61e-27
90 MA0872.1 TFAP2A MA0872.1 1.01e-29 8.79e-27
91 MA0521.2 Tcf12 MA0521.2 1.47e-29 1.27e-26
92 MA0812.1 TFAP2B MA0812.1 1.68e-29 1.45e-26
93 MA0738.1 HIC2 MA0738.1 4.56e-29 3.96e-26
94 MA0803.1 TBX15 MA0803.1 2.34e-28 2.03e-25
95 MA0783.1 PKNOX2 MA0783.1 4.67e-28 4.06e-25
97 MA1517.1 KLF6 MA1517.1 7.85e-27 6.81e-24
98 MA0003.4 TFAP2A MA0003.4 1.05e-26 9.13e-24
99 MA1648.1 TCF12 MA1648.1 2.4e-26 2.08e-23
100 MA0751.1 ZIC4 MA0751.1 2.41e-26 2.1e-23
101 MA0130.1 ZNF354C MA0130.1 9.45e-26 8.2e-23
102 MA0814.2 TFAP2C MA0814.2 1.06e-25 9.2e-23
103 MA1987.1 ZNF701 MA1987.1 3.52e-25 3.06e-22
104 MA1728.1 ZNF549 MA1728.1 7.69e-25 6.67e-22
105 MA0811.1 TFAP2B MA0811.1 1.09e-24 9.5e-22
106 MA1635.1 BHLHE22 MA1635.1 1.32e-24 1.14e-21
107 MA1600.1 ZNF684 MA1600.1 4.37e-24 3.79e-21
108 MA0506.2 Nrf1 MA0506.2 5.32e-24 4.62e-21
109 MA0691.1 TFAP4 MA0691.1 1.34e-23 1.16e-20
110 MA1619.1 Ptf1A MA1619.1 1.35e-23 1.17e-20
3 MA0774.1 (MEIS2) STREME-1 1-RGCTGTCA 1.96e-124 2.27e-20
111 MA0673.1 NKX2-8 MA0673.1 3.16e-23 2.74e-20
112 MA0499.2 MYOD1 MA0499.2 3.89e-23 3.37e-20
113 MA0734.3 Gli2 MA0734.3 4.77e-23 4.14e-20
114 MA0733.1 EGR4 MA0733.1 1.2e-22 1.04e-19
115 MA0670.1 NFIA MA0670.1 2.19e-22 1.9e-19
116 MA1979.1 ZNF416 MA1979.1 3.22e-22 2.8e-19
117 MA0796.1 TGIF1 MA0796.1 4.8e-22 4.17e-19
118 MA1656.1 ZNF449 MA1656.1 5.33e-22 4.63e-19
119 MA1982.1 ZNF574 MA1982.1 2.75e-21 2.39e-18
120 MA1641.1 MYF5 MA1641.1 4.04e-21 3.51e-18
121 MA0736.1 GLIS2 MA0736.1 6.15e-21 5.34e-18
122 MA1587.1 ZNF135 MA1587.1 1.3e-20 1.13e-17
265 MA1125.1 (ZNF384) MEME-3 TTTTTTTTTTTTTTT 0.964 1.7e-17
123 MA0665.1 MSC MA0665.1 3.59e-20 3.12e-17
124 MA1629.1 Zic2 MA1629.1 1.11e-19 9.63e-17
125 MA0816.1 Ascl2 MA0816.1 1.32e-19 1.14e-16
126 MA0807.1 TBX5 MA0807.1 1.32e-19 1.15e-16
127 MA1628.1 Zic1::Zic2 MA1628.1 1.74e-19 1.51e-16
128 MA0258.2 ESR2 MA0258.2 1.77e-19 1.54e-16
19 CAGCYCWG MEME-4 CAGCYCWG 4.56e-86 4.6e-16
129 MA0815.1 TFAP2C MA0815.1 8.29e-19 7.2e-16
130 MA0500.2 MYOG MA0500.2 8.84e-19 7.68e-16
131 MA0671.1 NFIX MA0671.1 9.85e-19 8.55e-16
132 MA0048.2 NHLH1 MA0048.2 1.02e-18 8.87e-16
133 MA0694.1 ZBTB7B MA0694.1 1.03e-18 8.92e-16
134 MA1472.2 Bhlha15 MA1472.2 1.63e-18 1.41e-15
135 MA1571.1 TGIF2LX MA1571.1 1.64e-18 1.42e-15
137 MA0145.2 Tfcp2l1 MA0145.2 4.11e-18 3.57e-15
138 MA1972.1 ZFP14 MA1972.1 5.69e-18 4.94e-15
139 MA1637.1 EBF3 MA1637.1 3.72e-17 3.23e-14
140 MA2002.1 Zfp335 MA2002.1 3.97e-17 3.44e-14
141 MA1100.2 ASCL1 MA1100.2 5.18e-17 4.5e-14
142 MA1122.1 TFDP1 MA1122.1 9.01e-17 7.82e-14
143 MA0104.4 MYCN MA0104.4 3.47e-16 3.01e-13
144 MA0071.1 RORA MA0071.1 3.57e-16 3.1e-13
145 MA1535.1 NR2C1 MA1535.1 3.82e-16 3.32e-13
146 MA0745.2 SNAI2 MA0745.2 8.78e-16 7.62e-13
147 MA0161.2 NFIC MA0161.2 9.13e-16 7.93e-13
2 MA0597.2 (THAP1) STREME-2 2-CCCTGCCA 1.3e-125 2.38e-12
148 MA1973.1 ZKSCAN3 MA1973.1 4.47e-15 3.88e-12
22 MA1548.1 (PLAGL2) STREME-3 3-WGGGCCCW 4.52e-83 4.85e-12
149 MA1730.1 ZNF708 MA1730.1 6.01e-15 5.21e-12
150 MA0750.2 ZBTB7A MA0750.2 6.86e-15 5.95e-12
151 MA1990.1 Gli1 MA1990.1 1.26e-14 1.09e-11
152 MA0805.1 TBX1 MA0805.1 1.67e-14 1.45e-11
153 MA1114.1 PBX3 MA1114.1 1.96e-14 1.7e-11
155 MA0766.2 GATA5 MA0766.2 4.6e-14 3.99e-11
5 MA1981.1 (ZNF530) STREME-4 4-WGGGCCTG 3.44e-118 5.44e-11
7 MA1630.2 (ZNF281) STREME-5 5-CCCCWCCC 1.93e-110 8.3e-11
156 MA0092.1 Hand1::Tcf3 MA0092.1 1.19e-13 1.03e-10
157 MA1985.1 ZNF669 MA1985.1 2.47e-13 2.15e-10
158 MA1567.2 Tbx6 MA1567.2 2.8e-13 2.43e-10
159 MA0649.1 HEY2 MA0649.1 3.16e-13 2.75e-10
160 MA0017.2 NR2F1 MA0017.2 4.25e-13 3.69e-10
161 MA0084.1 SRY MA0084.1 4.54e-13 3.95e-10
162 MA0073.1 RREB1 MA0073.1 5.36e-13 4.65e-10
163 MA0626.1 Npas2 MA0626.1 6.98e-13 6.06e-10
164 MA0676.1 Nr2e1 MA0676.1 7.96e-13 6.91e-10
165 MA0472.2 EGR2 MA0472.2 8.64e-13 7.5e-10
1 MA1979.1 (ZNF416) STREME-6 6-SAGCCCWG 2.43e-129 8.57e-10
166 MA0782.2 PKNOX1 MA0782.2 1.04e-12 9e-10
167 MA0154.4 EBF1 MA0154.4 1.51e-12 1.31e-09
168 MA0767.1 GCM2 MA0767.1 2.2e-12 1.91e-09
169 MA1604.1 Ebf2 MA1604.1 2.46e-12 2.13e-09
170 MA0163.1 PLAG1 MA0163.1 3.03e-12 2.63e-09
171 MA1109.1 NEUROD1 MA1109.1 4.52e-12 3.93e-09
172 MA1572.1 TGIF2LY MA1572.1 6.09e-12 5.29e-09
173 MA1531.1 NR1D1 MA1531.1 1.1e-11 9.55e-09
174 MA1110.2 Nr1H4 MA1110.2 1.12e-11 9.68e-09
175 MA0697.2 Zic3 MA0697.2 1.14e-11 9.9e-09
176 MA0147.3 MYC MA0147.3 1.55e-11 1.34e-08
177 MA0748.2 YY2 MA0748.2 1.62e-11 1.4e-08
178 MA0596.1 SREBF2 MA0596.1 2.8e-11 2.43e-08
179 MA1726.1 ZNF331 MA1726.1 6.21e-11 5.39e-08
180 MA0664.1 MLXIPL MA0664.1 6.96e-11 6.04e-08
181 MA1153.1 Smad4 MA1153.1 9.41e-11 8.17e-08
182 MA0720.1 Shox2 MA0720.1 1.67e-10 1.45e-07
9 MA1565.1 (TBX18) STREME-7 7-CACCTCY 4.08e-99 1.56e-07
183 MA0139.1 CTCF MA0139.1 1.89e-10 1.64e-07
264 TGTGTGTGTGTGTGT MEME-5 TGTGTGTGTGTGTGT 0.414 1.7e-07
184 MA0159.1 RARA::RXRA MA0159.1 2.31e-10 2.01e-07
8 8-CWGSCWG STREME-8 8-CWGSCWG 2.89e-99 2.08e-07
185 MA0821.2 HES5 MA0821.2 3.28e-10 2.84e-07
186 MA1570.1 TFAP4 MA1570.1 4.24e-10 3.68e-07
187 MA1731.1 ZNF768 MA1731.1 4.42e-10 3.84e-07
188 MA1108.2 MXI1 MA1108.2 5.27e-10 4.58e-07
189 MA1583.1 ZFP57 MA1583.1 6.68e-10 5.8e-07
190 MA0737.1 GLIS3 MA0737.1 1.21e-09 1.05e-06
191 MA1964.1 SMAD2 MA1964.1 1.3e-09 1.12e-06
192 MA0831.3 TFE3 MA0831.3 1.36e-09 1.18e-06
46 MA1643.1 (NFIB) STREME-9 9-CTTGGCAC 1.56e-58 1.19e-06
62 MA1631.1 (ASCL1) MEME-7 RGCWGCWGGGVSWGS 3.01e-43 2.1e-06
193 MA0006.1 Ahr::Arnt MA0006.1 2.85e-09 2.47e-06
194 MA0820.1 FIGLA MA0820.1 3.51e-09 3.05e-06
195 MA0723.2 VAX2 MA0723.2 3.52e-09 3.06e-06
196 MA0035.4 GATA1 MA0035.4 5.02e-09 4.35e-06
197 MA0674.1 NKX6-1 MA0674.1 5.41e-09 4.69e-06
199 MA0668.2 Neurod2 MA0668.2 6.49e-09 5.64e-06
200 MA0014.3 PAX5 MA0014.3 8.11e-09 7.04e-06
201 MA1727.1 ZNF417 MA1727.1 8.13e-09 7.05e-06
202 MA0806.1 TBX4 MA0806.1 8.68e-09 7.53e-06
203 MA0695.1 ZBTB7C MA0695.1 8.81e-09 7.65e-06
204 MA0704.1 Lhx4 MA0704.1 1.18e-08 1.02e-05
205 MA0027.2 EN1 MA0027.2 1.39e-08 1.2e-05
206 MA1569.1 TFAP2E MA1569.1 1.47e-08 1.28e-05
17 MA1630.2 (ZNF281) MEME-6 GGGGGMDGGGC 1.8e-86 1.3e-05
207 MA1966.1 TFAP4::ETV1 MA1966.1 2.24e-08 1.94e-05
208 MA1642.1 NEUROG2 MA1642.1 2.32e-08 2.01e-05
12 MA0146.2 (Zfx) STREME-10 10-CAGGCCW 1.7e-96 2.4e-05
209 MA0832.1 Tcf21 MA0832.1 4.18e-08 3.63e-05
210 MA0722.1 VAX1 MA0722.1 5.16e-08 4.48e-05
211 MA0730.1 RARA MA0730.1 6.82e-08 5.92e-05
212 MA1103.2 FOXK2 MA1103.2 6.96e-08 6.05e-05
213 MA0865.2 E2F8 MA0865.2 7.82e-08 6.79e-05
214 MA0769.2 TCF7 MA0769.2 7.86e-08 6.82e-05
215 MA1574.1 THRB MA1574.1 8.96e-08 7.77e-05
216 MA1996.1 Nr1H2 MA1996.1 1.15e-07 9.98e-05
217 MA0718.1 RAX MA0718.1 1.2e-07 0.000104
218 MA0698.1 ZBTB18 MA0698.1 1.25e-07 0.000108
219 MA0511.2 RUNX2 MA0511.2 1.59e-07 0.000138
43 MA1994.1 (Nkx2-1) STREME-11 11-CCACTTGAS 1.97e-60 0.00015
220 MA1558.1 SNAI1 MA1558.1 1.98e-07 0.000172
221 MA1941.1 ETV2::FIGLA MA1941.1 2.21e-07 0.000192
222 MA0716.1 PRRX1 MA0716.1 2.77e-07 0.00024
223 MA1606.1 Foxf1 MA1606.1 2.84e-07 0.000246
224 MA0882.1 DLX6 MA0882.1 2.95e-07 0.000256
225 MA0903.1 HOXB3 MA0903.1 3.16e-07 0.000274
226 MA0885.2 Dlx2 MA0885.2 3.35e-07 0.000291
227 MA1104.2 GATA6 MA1104.2 3.6e-07 0.000312
228 MA0648.1 GSC MA0648.1 5.25e-07 0.000456
229 MA0801.1 MGA MA0801.1 5.84e-07 0.000507
230 MA1715.1 ZNF707 MA1715.1 7.08e-07 0.000615
231 MA0692.1 TFEB MA0692.1 1.12e-06 0.000973
232 MA1498.2 HOXA7 MA1498.2 1.27e-06 0.0011
233 MA0595.1 SREBF1 MA0595.1 1.37e-06 0.00119
234 MA0858.1 Rarb MA0858.1 1.46e-06 0.00127
235 MA1565.1 TBX18 MA1565.1 1.66e-06 0.00144
236 MA1652.1 ZKSCAN5 MA1652.1 2.18e-06 0.0019
237 MA1566.2 TBX3 MA1566.2 2.31e-06 0.002
238 MA0643.1 Esrrg MA0643.1 2.7e-06 0.00234
239 MA1480.1 DPRX MA1480.1 2.95e-06 0.00256
240 MA0808.1 TEAD3 MA0808.1 3.43e-06 0.00298
241 MA1152.1 SOX15 MA1152.1 3.83e-06 0.00332
242 MA0696.1 ZIC1 MA0696.1 4.14e-06 0.00359
243 MA0667.1 MYF6 MA0667.1 4.38e-06 0.0038
244 MA1969.1 THRA MA1969.1 4.53e-06 0.00393
245 MA0630.1 SHOX MA0630.1 5.81e-06 0.00505
154 12-GCTCTCTTCA STREME-12 12-GCTCTCTTCA 2.01e-14 0.00512
246 MA0065.2 Pparg::Rxra MA0065.2 6.01e-06 0.00521
247 MA0879.2 DLX1 MA0879.2 6.98e-06 0.00606
248 MA0899.1 HOXA10 MA0899.1 7.27e-06 0.00631
249 MA0068.2 PAX4 MA0068.2 8.03e-06 0.00697
250 MA1593.1 ZNF317 MA1593.1 1.01e-05 0.00881
4 MA0734.3 (Gli2) STREME-13 13-CWCCCWG 3.17e-118 0.00907
251 MA1581.1 ZBTB6 MA1581.1 1.08e-05 0.00935
252 MA0116.1 Znf423 MA0116.1 1.74e-05 0.0151
253 MA0721.1 UNCX MA0721.1 1.84e-05 0.0159
254 MA1620.1 Ptf1A MA1620.1 2.93e-05 0.0254
198 14-GCAGACTTA STREME-14 14-GCAGACTTA 6e-09 0.0256
49 15-CCTCTCCA STREME-15 15-CCTCTCCA 2.89e-55 0.0259
255 MA1476.2 Dlx5 MA1476.2 3.01e-05 0.0261
256 MA0056.2 MZF1 MA0056.2 3.12e-05 0.0271
257 MA0004.1 Arnt MA0004.1 3.25e-05 0.0282
258 MA0033.2 FOXL1 MA0033.2 3.26e-05 0.0283
259 MA0093.3 USF1 MA0093.3 3.35e-05 0.0291
260 MA0675.1 NKX6-2 MA0675.1 3.6e-05 0.0312
261 MA0149.1 EWSR1-FLI1 MA0149.1 4.06e-05 0.0353
6 MA0783.1 (PKNOX2) STREME-16 16-STGNCAS 4.18e-113 0.0453
262 MA0650.3 Hoxa13 MA0650.3 5.44e-05 0.0472
36 MA1644.1 (NFYC) STREME-17 17-CCCATCA 2.43e-66 0.0539
44 MA0697.2 (Zic3) STREME-18 18-SAGSAGG 2.63e-60 0.794
136 19-GCTTATAGATAAAAC STREME-19 19-GCTTATAGATAAAAC 2.34e-18 2.19
263 MA0069.1 (PAX6) STREME-20 20-TACTCAAGCCTCA 0.000149 17.2
# ESR_OC_xstreme %>% 
#   dplyr::select(SIM_MOTIF,ALT_ID, ID,SEA_PVALUE,EVALUE) %>% 
#   arrange(.,EVALUE) %>%
#    dplyr::mutate_if(is.numeric, funs(as.character(signif(., 3)))) %>%
#   # separate(SIM_MOTIF, into= c("SIM_MOTIF", "NAME"), sep= " ") %>% 
#   # dplyr::filter(., EVALUE<0.05) %>% 
#   kable(., caption = "Enriched motifs  in ESR OC") %>%
#   kable_paper("striped", full_width = TRUE) %>%
#   kable_styling(full_width = FALSE, font_size = 16) %>%
#   scroll_box(height = "800px")

ESR_opcl_xstreme %>% 
  dplyr::select(SIM_MOTIF,ALT_ID, ID,SEA_PVALUE,EVALUE) %>% 
  arrange(.,EVALUE) %>%
   dplyr::mutate_if(is.numeric, funs(as.character(signif(., 3)))) %>%
  # separate(SIM_MOTIF, into= c("SIM_MOTIF", "NAME"), sep= " ") %>% 
  # dplyr::filter(., EVALUE<0.05) %>% 
  kable(., caption = "Enriched motifs  in ESR opcl") %>%
  kable_paper("striped", full_width = TRUE) %>%
  kable_styling(full_width = FALSE, font_size = 16) %>%
  scroll_box(height = "800px")
Enriched motifs in ESR opcl
SIM_MOTIF ALT_ID ID SEA_PVALUE EVALUE
MA1125.1 (ZNF384) MEME-1 AARWADAAAAAWAWW 1.73e-11 1e-13
MA1107.2 (KLF9) MEME-2 GTGTGTRTGTGTGTG 0.075 3e-07
MA0789.1 POU3F4 MA0789.1 5.29e-08 4.48e-05
MA0787.1 POU3F2 MA0787.1 3.21e-07 0.000272
MA0063.2 NKX2-5 MA0063.2 4.29e-07 0.000363
MA0676.1 Nr2e1 MA0676.1 4.7e-07 0.000397
MA0507.2 POU2F2 MA0507.2 7.47e-06 0.00632
MA0792.1 POU5F1B MA0792.1 8.05e-06 0.00681
MA1471.1 BARX2 MA1471.1 8.51e-06 0.0072
MA0788.1 POU3F3 MA0788.1 1.59e-05 0.0135
MA0913.2 HOXD9 MA0913.2 4.43e-05 0.0375
MA0790.1 POU4F1 MA0790.1 4.52e-05 0.0383
MA0465.2 CDX2 MA0465.2 4.76e-05 0.0403
1-AWATATWT STREME-1 1-AWATATWT 7.55e-06 0.372
2-CCAAGCTACA STREME-2 2-CCAAGCTACA 3.57e-10 1.38
MA1589.1 (ZNF140) STREME-3 3-AATTCCATTCTCHMW 9.86e-13 3
ESR_clop_xstreme %>% 
  dplyr::select(SIM_MOTIF,ALT_ID, ID,SEA_PVALUE,EVALUE) %>% 
  arrange(.,EVALUE) %>%
   dplyr::mutate_if(is.numeric, funs(as.character(signif(., 3)))) %>%
  # separate(SIM_MOTIF, into= c("SIM_MOTIF", "NAME"), sep= " ") %>% 
  # dplyr::filter(., EVALUE<0.05) %>% 
  kable(., caption = "Enriched motifs  in ESR clop") %>%
  kable_paper("striped", full_width = TRUE) %>%
  kable_styling(full_width = FALSE, font_size = 16) %>%
  scroll_box(height = "800px")
Enriched motifs in ESR clop
SIM_MOTIF ALT_ID ID SEA_PVALUE EVALUE
MA1988.1 Atf3 MA1988.1 3.21e-205 2.77e-202
MA0489.2 Jun MA0489.2 1.54e-198 1.33e-195
MA1134.1 FOS::JUNB MA1134.1 3.83e-198 3.31e-195
MA1138.1 FOSL2::JUNB MA1138.1 2.87e-195 2.48e-192
MA1634.1 BATF MA1634.1 3.04e-194 2.62e-191
MA1141.1 FOS::JUND MA1141.1 1.69e-193 1.46e-190
MA0099.3 FOS::JUN MA0099.3 1.96e-192 1.7e-189
MA1130.1 FOSL2::JUN MA1130.1 1.98e-192 1.71e-189
MA0462.2 BATF::JUN MA0462.2 3.72e-191 3.22e-188
MA0477.2 FOSL1 MA0477.2 5.43e-189 4.7e-186
MA1135.1 FOSB::JUNB MA1135.1 7.75e-189 6.69e-186
MA0835.2 BATF3 MA0835.2 6.81e-188 5.89e-185
MA1144.1 FOSL2::JUND MA1144.1 3.96e-187 3.42e-184
MA1633.2 BACH1 MA1633.2 1.72e-186 1.49e-183
MA1128.1 FOSL1::JUN MA1128.1 2.58e-185 2.23e-182
MA0491.2 JUND MA0491.2 1.82e-184 1.57e-181
MA0476.1 FOS MA0476.1 3.82e-181 3.3e-178
MA0490.2 JUNB MA0490.2 2.92e-180 2.52e-177
MA1137.1 FOSL1::JUNB MA1137.1 3.75e-180 3.24e-177
MA0478.1 FOSL2 MA0478.1 8.72e-178 7.53e-175
MA0655.1 JDP2 MA0655.1 4.99e-161 4.32e-158
MA1928.1 BNC2 MA1928.1 5.57e-161 4.81e-158
MA1101.2 BACH2 MA1101.2 1.66e-160 1.44e-157
MA1142.1 FOSL1::JUND MA1142.1 3.78e-156 3.27e-153
MA1132.1 JUN::JUNB MA1132.1 3.59e-147 3.1e-144
MA0841.1 NFE2 MA0841.1 4.31e-123 3.73e-120
MA1134.1 (FOS::JUNB) MEME-1 RRTGACTCAKV 1.2e-197 5.1e-112
MA0089.2 MAFG::NFE2L1 MA0089.2 1e-85 8.64e-83
MA0496.3 MAFK MA0496.3 8.86e-78 7.66e-75
MA1125.1 (ZNF384) MEME-2 AAAAAAAAAAAAAAA 2.07e-10 2e-74
MA0501.1 MAF::NFE2 MA0501.1 6.75e-72 5.83e-69
MA0659.3 Mafg MA0659.3 5.69e-63 4.92e-60
MA0150.2 Nfe2l2 MA0150.2 1.78e-54 1.54e-51
MA0682.2 (PITX1) MEME-4 WGCTGGGATTACAGG 9.38e-11 3.2e-45
AGGCTGGAGTGCAGT MEME-3 AGGCTGGAGTGCAGT 1.14e-13 6.4e-43
MA0790.1 POU4F1 MA0790.1 4.04e-44 3.49e-41
MA0680.2 Pax7 MA0680.2 1.14e-39 9.82e-37
MA0791.1 POU4F3 MA0791.1 4.56e-39 3.94e-36
MA1596.1 (ZNF460) MEME-5 CCTCAGCCTCCCAAR 3.4e-09 2.8e-33
MA0037.4 Gata3 MA0037.4 1.3e-35 1.13e-32
MA0681.2 PHOX2B MA0681.2 1.23e-34 1.06e-31
MA1978.1 ZNF354A MA1978.1 1.77e-34 1.53e-31
MA1104.2 GATA6 MA1104.2 6.8e-34 5.88e-31
MA0142.1 Pou5f1::Sox2 MA0142.1 1.2e-33 1.03e-30
MA0676.1 Nr2e1 MA0676.1 1.28e-33 1.1e-30
MA0901.2 HOXB13 MA0901.2 9.15e-33 7.91e-30
MA0723.2 VAX2 MA0723.2 1.14e-32 9.85e-30
MA1963.1 SATB1 MA1963.1 1.48e-32 1.28e-29
MA0785.1 POU2F1 MA0785.1 1.87e-32 1.62e-29
MA0787.1 POU3F2 MA0787.1 4.26e-32 3.68e-29
MA1471.1 BARX2 MA1471.1 6.56e-32 5.66e-29
MA0786.1 POU3F1 MA0786.1 8.73e-32 7.55e-29
MA0035.4 GATA1 MA0035.4 1.89e-31 1.64e-28
MA0628.1 POU6F1 MA0628.1 8.18e-31 7.07e-28
MA0792.1 POU5F1B MA0792.1 1.05e-30 9.05e-28
MA0793.1 POU6F2 MA0793.1 2.5e-30 2.16e-27
MA0158.2 HOXA5 MA0158.2 2.62e-30 2.26e-27
MA1549.1 POU6F1 MA1549.1 2.79e-30 2.41e-27
MA0846.1 FOXC2 MA0846.1 3.36e-30 2.9e-27
MA1606.1 Foxf1 MA1606.1 3.59e-29 3.1e-26
MA0788.1 POU3F3 MA0788.1 4.08e-29 3.52e-26
MA0477.2 (FOSL1) STREME-1 1-NNNVTGASTCABNNN 3.44e-213 3.55e-26
CTCAAGYGATCCTCC MEME-6 CTCAAGYGATCCTCC 2.16e-10 9.3e-26
MA1970.1 TRPS1 MA1970.1 2.95e-28 2.55e-25
MA1643.1 (NFIB) MEME-8 GCCRGGCRYGGTGGC 7.07e-06 2.7e-25
MA0910.2 HOXD8 MA0910.2 4.32e-28 3.73e-25
MA0041.2 FOXD3 MA0041.2 4.47e-28 3.86e-25
MA0052.4 MEF2A MA0052.4 7.42e-28 6.41e-25
MA0031.1 FOXD1 MA0031.1 1.21e-27 1.05e-24
MA0602.1 Arid5a MA0602.1 2.2e-27 1.9e-24
MA0766.2 GATA5 MA0766.2 2.38e-27 2.05e-24
MA0630.1 SHOX MA0630.1 2.57e-27 2.22e-24
MA0153.2 HNF1B MA0153.2 5.37e-27 4.64e-24
MA1502.1 HOXB8 MA1502.1 1.16e-26 1.01e-23
MA0707.2 MNX1 MA0707.2 1.29e-26 1.12e-23
MA0718.1 RAX MA0718.1 1.98e-26 1.71e-23
MA1639.1 MEIS1 MA1639.1 2.07e-26 1.79e-23
MA0654.1 ISX MA0654.1 2.17e-26 1.88e-23
MA0886.1 EMX2 MA0886.1 3.1e-26 2.68e-23
MA1487.2 FOXE1 MA1487.2 3.17e-26 2.74e-23
MA0905.1 HOXC10 MA0905.1 3.82e-26 3.3e-23
MA0148.4 FOXA1 MA0148.4 6.61e-26 5.71e-23
MA0902.2 HOXB2 MA0902.2 1.09e-25 9.46e-23
MA0713.1 PHOX2A MA0713.1 1.18e-25 1.02e-22
MA0674.1 NKX6-1 MA0674.1 1.58e-25 1.36e-22
MA0661.1 MEOX1 MA0661.1 1.69e-25 1.46e-22
MA0465.2 CDX2 MA0465.2 1.86e-25 1.61e-22
MA0904.2 HOXB5 MA0904.2 1.9e-25 1.64e-22
MA0601.1 Arid3b MA0601.1 2.7e-25 2.33e-22
MA0722.1 VAX1 MA0722.1 2.9e-25 2.51e-22
MA1495.1 HOXA1 MA1495.1 3.82e-25 3.3e-22
MA1152.1 SOX15 MA1152.1 4.01e-25 3.46e-22
MA0634.1 ALX3 MA0634.1 6.04e-25 5.21e-22
MA0789.1 POU3F4 MA0789.1 1.71e-24 1.48e-21
MA0658.1 LHX6 MA0658.1 2.01e-24 1.73e-21
MA1505.1 HOXC8 MA1505.1 2.47e-24 2.13e-21
MA0912.2 HOXD3 MA0912.2 3e-24 2.59e-21
MA0046.2 HNF1A MA0046.2 3.72e-24 3.21e-21
MA0845.1 FOXB1 MA0845.1 4.99e-24 4.31e-21
MA0027.2 EN1 MA0027.2 5.32e-24 4.6e-21
MA0899.1 HOXA10 MA0899.1 6.38e-24 5.51e-21
MA0495.3 MAFF MA0495.3 7.9e-24 6.83e-21
MA0612.2 EMX1 MA0612.2 8.69e-24 7.51e-21
MA0880.1 Dlx3 MA0880.1 9.27e-24 8.01e-21
MA0482.2 GATA4 MA0482.2 1.62e-23 1.4e-20
MA0709.1 Msx3 MA0709.1 1.81e-23 1.56e-20
MA0851.1 Foxj3 MA0851.1 3.84e-23 3.32e-20
MA0909.3 Hoxd13 MA0909.3 3.95e-23 3.41e-20
MA1143.1 FOSL1::JUND MA1143.1 5.59e-23 4.83e-20
MA1623.1 Stat2 MA1623.1 6.05e-23 5.23e-20
MA0898.1 Hmx3 MA0898.1 6.21e-23 5.36e-20
MA0143.4 SOX2 MA0143.4 7.09e-23 6.12e-20
MA0894.1 HESX1 MA0894.1 7.95e-23 6.86e-20
MA1480.1 DPRX MA1480.1 8.31e-23 7.18e-20
MA1124.1 ZNF24 MA1124.1 1.08e-22 9.37e-20
MA1499.1 HOXB4 MA1499.1 1.53e-22 1.32e-19
MA0833.2 ATF4 MA0833.2 1.56e-22 1.35e-19
TCTYRCTCTGTYRCC MEME-7 TCTYRCTCTGTYRCC 1.31e-11 1.6e-19
MA0682.2 PITX1 MA0682.2 1.92e-22 1.66e-19
MA0675.1 NKX6-2 MA0675.1 3.82e-22 3.3e-19
MA1636.1 CEBPG MA1636.1 4.45e-22 3.84e-19
MA0701.2 LHX9 MA0701.2 4.5e-22 3.88e-19
MA0720.1 Shox2 MA0720.1 4.72e-22 4.08e-19
MA0889.1 GBX1 MA0889.1 4.82e-22 4.16e-19
MA0706.1 MEOX2 MA0706.1 6.62e-22 5.72e-19
MA0036.3 GATA2 MA0036.3 7.11e-22 6.15e-19
MA0591.1 Bach1::Mafk MA0591.1 9.03e-22 7.8e-19
MA0881.1 Dlx4 MA0881.1 9.47e-22 8.18e-19
MA0725.1 VSX1 MA0725.1 9.68e-22 8.36e-19
MA0704.1 Lhx4 MA0704.1 1.06e-21 9.18e-19
MA0908.1 HOXD11 MA0908.1 1.08e-21 9.34e-19
MA1640.1 MEIS2 MA1640.1 1.48e-21 1.28e-18
MA0047.3 FOXA2 MA0047.3 1.49e-21 1.29e-18
MA0885.2 Dlx2 MA0885.2 2.05e-21 1.78e-18
MA1657.1 ZNF652 MA1657.1 2.63e-21 2.27e-18
MA1481.1 DRGX MA1481.1 3.09e-21 2.67e-18
MA0627.2 POU2F3 MA0627.2 3.44e-21 2.97e-18
MA0755.1 CUX2 MA0755.1 3.9e-21 3.37e-18
MA1497.1 HOXA6 MA1497.1 6.88e-21 5.95e-18
MA0890.1 GBX2 MA0890.1 7.14e-21 6.17e-18
MA0084.1 SRY MA0084.1 1.31e-20 1.13e-17
MA0726.1 VSX2 MA0726.1 1.49e-20 1.29e-17
MA0868.2 SOX8 MA0868.2 1.49e-20 1.29e-17
MA1607.1 Foxl2 MA1607.1 1.99e-20 1.72e-17
MA0666.2 MSX1 MA0666.2 2.11e-20 1.82e-17
MA0038.2 (GFI1) MEME-9 TCWCRGCTCACTGCA 4.89e-09 2.7e-17
MA1519.1 LHX5 MA1519.1 3.41e-20 2.94e-17
MA0611.2 Dux MA0611.2 4.64e-20 4.01e-17
MA0132.2 PDX1 MA0132.2 1.01e-19 8.75e-17
MA0032.2 FOXC1 MA0032.2 1.1e-19 9.53e-17
MA0523.1 TCF7L2 MA0523.1 1.11e-19 9.56e-17
MA0125.1 Nobox MA0125.1 1.44e-19 1.25e-16
MA0481.3 FOXP1 MA0481.3 1.55e-19 1.34e-16
MA0705.1 Lhx8 MA0705.1 1.6e-19 1.38e-16
MA0879.2 DLX1 MA0879.2 1.73e-19 1.49e-16
MA1113.2 PBX2 MA1113.2 1.86e-19 1.61e-16
MA0754.2 CUX1 MA0754.2 2.15e-19 1.86e-16
MA0882.1 DLX6 MA0882.1 2.56e-19 2.21e-16
MA0724.1 VENTX MA0724.1 2.82e-19 2.44e-16
MA0075.3 PRRX2 MA0075.3 2.85e-19 2.46e-16
MA0716.1 PRRX1 MA0716.1 3.13e-19 2.71e-16
MA0122.3 Nkx3-2 MA0122.3 3.44e-19 2.97e-16
MA0077.1 SOX9 MA0077.1 3.64e-19 3.14e-16
MA0883.1 Dmbx1 MA0883.1 3.74e-19 3.23e-16
MA0710.1 NOTO MA0710.1 4.19e-19 3.62e-16
MA1125.1 ZNF384 MA1125.1 8.32e-19 7.19e-16
MA0708.2 MSX2 MA0708.2 1.12e-18 9.65e-16
MA0875.1 BARX1 MA0875.1 1.95e-18 1.68e-15
MA0900.2 HOXA2 MA0900.2 2.73e-18 2.36e-15
MA0151.1 Arid3a MA0151.1 2.97e-18 2.56e-15
MA1683.1 FOXA3 MA1683.1 3.79e-18 3.28e-15
MA0613.1 FOXG1 MA0613.1 4.34e-18 3.75e-15
MA0895.1 HMBOX1 MA0895.1 4.82e-18 4.16e-15
MA1115.1 POU5F1 MA1115.1 8.73e-18 7.54e-15
MA0717.1 RAX2 MA0717.1 1.2e-17 1.04e-14
MA0700.2 LHX2 MA0700.2 1.29e-17 1.12e-14
MA0847.3 FOXD2 MA0847.3 1.32e-17 1.14e-14
MA1518.2 Lhx1 MA1518.2 1.35e-17 1.16e-14
MA0068.2 PAX4 MA0068.2 1.43e-17 1.24e-14
MA0644.2 ESX1 MA0644.2 2.19e-17 1.89e-14
MA1530.1 NKX6-3 MA1530.1 2.55e-17 2.21e-14
MA1489.1 FOXN3 MA1489.1 2.75e-17 2.38e-14
MA0650.3 Hoxa13 MA0650.3 2.97e-17 2.56e-14
MA0911.1 Hoxa11 MA0911.1 3.47e-17 2.99e-14
MA1603.1 Dmrt1 MA1603.1 6.48e-17 5.6e-14
MA1103.2 FOXK2 MA1103.2 1e-16 8.66e-14
MA1463.1 ARGFX MA1463.1 1.15e-16 9.98e-14
MA0903.1 HOXB3 MA0903.1 1.31e-16 1.13e-13
MA0913.2 HOXD9 MA0913.2 1.72e-16 1.48e-13
MA0888.1 EVX2 MA0888.1 3.06e-16 2.65e-13
MA0662.1 MIXL1 MA0662.1 3.1e-16 2.68e-13
MA0721.1 UNCX MA0721.1 3.13e-16 2.7e-13
MA0497.1 MEF2C MA0497.1 3.31e-16 2.86e-13
MA0140.2 GATA1::TAL1 MA0140.2 4.51e-16 3.89e-13
MA1476.2 Dlx5 MA1476.2 4.64e-16 4.01e-13
MA0108.2 TBP MA0108.2 6.63e-16 5.73e-13
MA0876.1 BSX MA0876.1 7.29e-16 6.3e-13
MA0854.1 Alx1 MA0854.1 7.83e-16 6.76e-13
MA1977.1 (ZNF324) MEME-11 TYCTTYYYTYTCYTY 6.65e-11 1.2e-12
MA1577.1 TLX2 MA1577.1 1.54e-15 1.33e-12
MA1479.1 DMRTC2 MA1479.1 2.2e-15 1.9e-12
MA0467.2 Crx MA0467.2 2.52e-15 2.18e-12
MA0892.1 GSX1 MA0892.1 2.92e-15 2.52e-12
MA0906.1 HOXC12 MA0906.1 3.13e-15 2.71e-12
MA0606.2 Nfat5 MA0606.2 4.03e-15 3.48e-12
MA0483.1 Gfi1B MA0483.1 5.52e-15 4.77e-12
MA1500.1 HOXB6 MA1500.1 5.61e-15 4.85e-12
MA1709.1 ZIM3 MA1709.1 5.67e-15 4.9e-12
MA0033.2 FOXL1 MA0033.2 5.76e-15 4.98e-12
MA0648.1 GSC MA0648.1 6.58e-15 5.68e-12
MA0714.1 PITX3 MA0714.1 7.48e-15 6.46e-12
MA1588.1 ZNF136 MA1588.1 8.18e-15 7.06e-12
MA0050.3 Irf1 MA0050.3 9.89e-15 8.54e-12
MA0893.2 GSX2 MA0893.2 1.09e-14 9.44e-12
MA1990.1 (Gli1) MEME-10 GGCTGGTCTYGAACT 7.17e-05 1e-11
MA0849.1 FOXO6 MA0849.1 1.3e-14 1.12e-11
MA0891.1 GSC2 MA0891.1 1.53e-14 1.32e-11
MA1974.1 ZNF211 MA1974.1 3.1e-14 2.68e-11
MA0618.1 LBX1 MA0618.1 3.23e-14 2.79e-11
MA0117.2 Mafb MA0117.2 3.64e-14 3.15e-11
MA0514.2 Sox3 MA0514.2 3.67e-14 3.17e-11
MA0642.2 EN2 MA0642.2 3.7e-14 3.2e-11
MA0887.1 EVX1 MA0887.1 3.97e-14 3.43e-11
MA0769.2 TCF7 MA0769.2 4.64e-14 4.01e-11
MA0043.3 HLF MA0043.3 5.44e-14 4.7e-11
MA0157.3 Foxo3 MA0157.3 8.93e-14 7.72e-11
MA0896.1 Hmx1 MA0896.1 9.24e-14 7.99e-11
MA1120.1 SOX13 MA1120.1 1.08e-13 9.36e-11
MA0025.2 NFIL3 MA0025.2 1.14e-13 9.88e-11
MA0699.1 LBX2 MA0699.1 1.33e-13 1.15e-10
MA0078.2 Sox17 MA0078.2 1.58e-13 1.36e-10
MA0679.2 ONECUT1 MA0679.2 1.84e-13 1.59e-10
MA1960.1 MGA::EVX1 MA1960.1 3.22e-13 2.78e-10
MA1501.1 HOXB7 MA1501.1 3.28e-13 2.84e-10
MA0867.2 SOX4 MA0867.2 3.74e-13 3.23e-10
MA0874.1 Arx MA0874.1 4.22e-13 3.65e-10
MA0843.1 TEF MA0843.1 5.77e-13 4.98e-10
MA1504.1 HOXC4 MA1504.1 8.22e-13 7.1e-10
MA0837.2 CEBPE MA0837.2 8.58e-13 7.41e-10
MA0614.1 Foxj2 MA0614.1 1e-12 8.64e-10
MA1478.1 DMRTA2 MA1478.1 1.08e-12 9.3e-10
MA0768.2 Lef1 MA0768.2 1.19e-12 1.03e-09
MA0829.2 SREBF1 MA0829.2 1.25e-12 1.08e-09
MA0715.1 PROP1 MA0715.1 1.28e-12 1.1e-09
MA0809.2 TEAD4 MA0809.2 1.3e-12 1.12e-09
MA0780.1 PAX3 MA0780.1 1.5e-12 1.29e-09
MA0040.1 Foxq1 MA0040.1 2.17e-12 1.87e-09
MA1562.1 SOX14 MA1562.1 2.19e-12 1.89e-09
MA1729.1 ZNF680 MA1729.1 2.47e-12 2.14e-09
MA0853.1 Alx4 MA0853.1 4.41e-12 3.81e-09
MA1496.1 HOXA4 MA1496.1 4.54e-12 3.92e-09
MA1563.2 SOX18 MA1563.2 4.9e-12 4.24e-09
MA1421.1 TCF7L1 MA1421.1 6.91e-12 5.97e-09
MA0757.1 ONECUT3 MA0757.1 9.3e-12 8.03e-09
MA0029.1 Mecom MA0029.1 9.45e-12 8.17e-09
MA0712.2 OTX2 MA0712.2 2.03e-11 1.76e-08
MA0036.3 (GATA2) STREME-2 2-AAGATAA 9.29e-44 2.14e-08
MA0711.1 OTX1 MA0711.1 2.69e-11 2.32e-08
MA0492.1 JUND MA0492.1 2.75e-11 2.37e-08
MA1507.1 HOXD4 MA1507.1 3.76e-11 3.25e-08
MA0782.2 PKNOX1 MA0782.2 3.94e-11 3.41e-08
MA0852.2 FOXK1 MA0852.2 5.31e-11 4.59e-08
MA0102.4 CEBPA MA0102.4 8.36e-11 7.22e-08
MA0842.2 NRL MA0842.2 1.28e-10 1.11e-07
MA0689.1 TBX20 MA0689.1 1.29e-10 1.11e-07
MA0702.2 LMX1A MA0702.2 2.16e-10 1.87e-07
MA0063.2 NKX2-5 MA0063.2 2.66e-10 2.3e-07
MA0848.1 FOXO4 MA0848.1 3.28e-10 2.84e-07
MA0070.1 PBX1 MA0070.1 3.63e-10 3.14e-07
MA1112.2 NR4A1 MA1112.2 3.89e-10 3.36e-07
MA1119.1 SIX2 MA1119.1 4.16e-10 3.59e-07
MA1139.1 FOSL2::JUNB MA1139.1 5.38e-10 4.65e-07
MA0087.2 Sox5 MA0087.2 5.49e-10 4.74e-07
MA1547.2 PITX2 MA1547.2 6.26e-10 5.41e-07
MA0838.1 CEBPG MA0838.1 8.75e-10 7.56e-07
MA1498.2 HOXA7 MA1498.2 9.87e-10 8.53e-07
MA0466.3 CEBPB MA0466.3 1.11e-09 9.61e-07
MA0480.2 Foxo1 MA0480.2 1.21e-09 1.04e-06
MA1127.1 FOSB::JUN MA1127.1 1.25e-09 1.08e-06
MA0836.2 CEBPD MA0836.2 1.49e-09 1.29e-06
MA0488.1 JUN MA0488.1 1.68e-09 1.45e-06
MA0093.3 USF1 MA0093.3 1.91e-09 1.65e-06
MA0639.1 DBP MA0639.1 2e-09 1.73e-06
MA0621.1 mix-a MA0621.1 2.57e-09 2.22e-06
MA1506.1 HOXD10 MA1506.1 2.91e-09 2.51e-06
MA0517.1 STAT1::STAT2 MA0517.1 3.03e-09 2.62e-06
MA1608.1 Isl1 MA1608.1 3.25e-09 2.81e-06
MA0030.1 FOXF2 MA0030.1 4.16e-09 3.59e-06
MA1991.1 Hnf1A MA1991.1 4.17e-09 3.6e-06
MA0850.1 FOXP3 MA0850.1 8.2e-09 7.08e-06
MA1126.1 FOS::JUN MA1126.1 8.98e-09 7.76e-06
MA0596.1 SREBF2 MA0596.1 9.38e-09 8.1e-06
TTTTTWGTAGAGAYR MEME-12 TTTTTWGTAGAGAYR 8.66e-09 9e-06
MA0877.3 BARHL1 MA0877.3 1.13e-08 9.73e-06
MA0038.2 GFI1 MA0038.2 1.16e-08 1e-05
MA1118.1 SIX1 MA1118.1 1.34e-08 1.16e-05
MA1131.1 FOSL2::JUN MA1131.1 1.35e-08 1.17e-05
MA1129.1 FOSL1::JUN MA1129.1 1.55e-08 1.34e-05
MA0090.3 TEAD1 MA0090.3 2.25e-08 1.95e-05
MA0635.1 BARHL2 MA0635.1 3.18e-08 2.75e-05
MA0914.1 ISL2 MA0914.1 4.41e-08 3.81e-05
MA0878.3 CDX1 MA0878.3 6.56e-08 5.67e-05
MA0693.3 Vdr MA0693.3 7.59e-08 6.56e-05
MA0884.2 DUXA MA0884.2 7.6e-08 6.57e-05
3-ATWWWAT STREME-3 3-ATWWWAT 1.19e-32 7.41e-05
MA0052.4 (MEF2A) STREME-4 4-AAAAAT 5.18e-29 7.84e-05
MA0144.2 STAT3 MA0144.2 1.09e-07 9.42e-05
MA0907.1 HOXC13 MA0907.1 1.24e-07 0.000107
MA0042.2 FOXI1 MA0042.2 2.07e-07 0.000178
MA1975.1 ZNF214 MA1975.1 2.87e-07 0.000248
MA0498.2 MEIS1 MA0498.2 3.24e-07 0.00028
MA1133.1 JUN::JUNB MA1133.1 3.81e-07 0.000329
MA1114.1 PBX3 MA1114.1 4.47e-07 0.000387
MA0018.4 CREB1 MA0018.4 4.73e-07 0.000408
MA0629.1 Rhox11 MA0629.1 6.68e-07 0.000577
MA0624.2 Nfatc1 MA0624.2 7.84e-07 0.000678
MA0719.1 RHOXF1 MA0719.1 7.94e-07 0.000686
MA1561.1 SOX12 MA1561.1 8.45e-07 0.00073
MA0706.1 (MEOX2) STREME-5 5-TRATYA 8.55e-31 0.000746
MA0468.1 DUX4 MA0468.1 9.34e-07 0.000807
MA1111.1 NR2F2 MA1111.1 1.74e-06 0.0015
MA0687.1 SPIC MA0687.1 2.32e-06 0.002
MA1645.1 NKX2-2 MA1645.1 3.84e-06 0.00332
MA0626.1 Npas2 MA0626.1 4.39e-06 0.00379
MA0124.2 Nkx3-1 MA0124.2 5.21e-06 0.0045
MA0595.1 SREBF1 MA0595.1 5.9e-06 0.0051
MA0631.1 Six3 MA0631.1 6.34e-06 0.00548
MA0515.1 Sox6 MA0515.1 6.72e-06 0.00581
MA0610.1 DMRT3 MA0610.1 7.72e-06 0.00667
MA0152.2 Nfatc2 MA0152.2 8.49e-06 0.00733
MA0141.3 ESRRB MA0141.3 9.27e-06 0.00801
MA0461.2 Atoh1 MA0461.2 9.38e-06 0.0081
MA1980.1 ZNF418 MA1980.1 9.98e-06 0.00862
MA0620.3 MITF MA0620.3 1.01e-05 0.00871
MA0784.2 POU1F1 MA0784.2 1.09e-05 0.00944
MA1596.1 ZNF460 MA1596.1 1.17e-05 0.0101
MA0069.1 PAX6 MA0069.1 1.61e-05 0.0139
MA1720.1 ZNF85 MA1720.1 1.74e-05 0.015
MA0060.3 NFYA MA0060.3 1.85e-05 0.016
MA1632.1 ATF2 MA1632.1 2.26e-05 0.0195
MA1593.1 ZNF317 MA1593.1 2.87e-05 0.0248
MA1145.1 FOSL2::JUND MA1145.1 3.92e-05 0.0338
MA0897.1 Hmx2 MA0897.1 4.55e-05 0.0393
MA1105.2 GRHL2 MA1105.2 5.42e-05 0.0468
MA1479.1 (DMRTC2) STREME-6 6-TATCAA 7.87e-31 0.0472
MA1589.1 (ZNF140) STREME-7 7-AGAATTGCT 3.05e-08 0.0569
8-GCTCACTGCA STREME-8 8-GCTCACTGCA 2.12e-08 0.0616
MA1487.2 (FOXE1) STREME-9 9-AAAAAAA 4.24e-19 0.214
10-CACTGCACTCCAGCC STREME-10 10-CACTGCACTCCAGCC 5.54e-06 3.71
MA0676.1 (Nr2e1) STREME-11 11-AGTCAW 6.79e-83 4.73

LR lists

# LR_open_10h_xstreme %>%
#   dplyr::select(RANK,SIM_MOTIF,ALT_ID, ID,SEA_PVALUE,EVALUE) %>%
#   arrange(.,EVALUE) %>%
#    dplyr::mutate_if(is.numeric, funs(as.character(signif(., 3)))) %>%
#   # separate(SIM_MOTIF, into= c("SIM_MOTIF", "NAME"), sep= " ") %>%
#   # dplyr::filter(., EVALUE<0.05) %>%
#   kable(., caption = "Enriched motifs in LR_open") %>%
#   kable_paper("striped", full_width = TRUE) %>%
#   kable_styling(full_width = FALSE, font_size = 16) %>%
#   scroll_box(height = "800px")

LR_open_200xstreme %>%
  dplyr::select(RANK,SIM_MOTIF,ALT_ID, ID,SEA_PVALUE,EVALUE) %>%
  arrange(.,EVALUE) %>%
   dplyr::mutate_if(is.numeric, funs(as.character(signif(., 3)))) %>%
  # separate(SIM_MOTIF, into= c("SIM_MOTIF", "NAME"), sep= " ") %>%
  # dplyr::filter(., EVALUE<0.05) %>%
  kable(., caption = "Enriched motifs in LR_open 200bp only") %>%
  kable_paper("striped", full_width = TRUE) %>%
  kable_styling(full_width = FALSE, font_size = 16) %>%
  scroll_box(height = "800px")
Enriched motifs in LR_open 200bp only
RANK SIM_MOTIF ALT_ID ID SEA_PVALUE EVALUE
35 MA0659.3 Mafg MA0659.3 1.2e-305 1.04e-305
10 MA1130.1 FOSL2::JUN MA1130.1 1.19e-305 1.05e-305
1 MA1134.1 (FOS::JUNB) STREME-1 1-DATGASTCATH 1.09e-305 1.09e-305
55 MA0680.2 Pax7 MA0680.2 1.33e-305 1.16e-305
26 MA1142.1 FOSL1::JUND MA1142.1 1.58e-305 1.39e-305
48 MA0788.1 POU3F3 MA0788.1 1.64e-305 1.44e-305
32 MA0501.1 MAF::NFE2 MA0501.1 1.68e-305 1.46e-305
31 MA0496.3 MAFK MA0496.3 1.77e-305 1.56e-305
15 MA1633.2 BACH1 MA1633.2 1.89e-305 1.65e-305
50 MA0153.2 HNF1B MA0153.2 1.99e-305 1.74e-305
16 MA0490.2 JUNB MA0490.2 2.13e-305 1.86e-305
24 MA0655.1 JDP2 MA0655.1 2.14e-305 1.86e-305
27 MA1101.2 BACH2 MA1101.2 2.17e-305 1.89e-305
47 MA0046.2 HNF1A MA0046.2 2.16e-305 1.89e-305
7 MA0477.2 FOSL1 MA0477.2 2.29e-305 2.01e-305
41 MA0791.1 POU4F3 MA0791.1 2.37e-305 2.07e-305
13 MA0099.3 FOS::JUN MA0099.3 2.4e-305 2.11e-305
3 MA1134.1 FOS::JUNB MA1134.1 2.81e-305 2.45e-305
14 MA0491.2 JUND MA0491.2 3.13e-305 2.75e-305
52 MA0886.1 EMX2 MA0886.1 3.15e-305 2.75e-305
28 MA1132.1 JUN::JUNB MA1132.1 3.16e-305 2.79e-305
49 MA0681.2 PHOX2B MA0681.2 3.32e-305 2.9e-305
17 MA1634.1 BATF MA1634.1 3.66e-305 3.22e-305
37 MA1113.2 PBX2 MA1113.2 3.86e-305 3.37e-305
51 MA0902.2 HOXB2 MA0902.2 4.01e-305 3.5e-305
44 MA0786.1 POU3F1 MA0786.1 4.17e-305 3.65e-305
36 MA1639.1 MEIS1 MA1639.1 4.24e-305 3.74e-305
60 MA1115.1 POU5F1 MA1115.1 4.34e-305 3.79e-305
19 MA0462.2 BATF::JUN MA0462.2 4.38e-305 3.81e-305
38 MA0676.1 Nr2e1 MA0676.1 4.68e-305 4.09e-305
9 MA1141.1 FOS::JUND MA1141.1 5.32e-305 4.64e-305
54 MA0846.1 FOXC2 MA0846.1 5.57e-305 4.86e-305
5 MA0476.1 FOS MA0476.1 5.63e-305 4.9e-305
23 MA1928.1 BNC2 MA1928.1 5.86e-305 5.16e-305
2 MA1144.1 FOSL2::JUND MA1144.1 5.93e-305 5.22e-305
22 MA1137.1 FOSL1::JUNB MA1137.1 6.36e-305 5.54e-305
62 MA0679.2 ONECUT1 MA0679.2 7.01e-305 6.12e-305
64 MA0787.1 POU3F2 MA0787.1 7.21e-305 6.3e-305
11 MA0489.2 Jun MA0489.2 7.2e-305 6.34e-305
56 MA0785.1 POU2F1 MA0785.1 7.29e-305 6.37e-305
58 MA1487.2 FOXE1 MA1487.2 7.53e-305 6.58e-305
59 MA0789.1 POU3F4 MA0789.1 7.6e-305 6.64e-305
29 MA0841.1 NFE2 MA0841.1 7.56e-305 6.65e-305
42 MA1640.1 MEIS2 MA1640.1 7.76e-305 6.78e-305
18 MA1988.1 Atf3 MA1988.1 8.29e-305 7.3e-305
4 MA1138.1 FOSL2::JUNB MA1138.1 8.36e-305 7.36e-305
20 MA0835.2 BATF3 MA0835.2 8.75e-305 7.62e-305
12 MA1128.1 FOSL1::JUN MA1128.1 9.06e-305 7.9e-305
21 MA0478.1 FOSL2 MA0478.1 9.16999999999999e-305 8.07e-305
39 MA0790.1 POU4F1 MA0790.1 9.46e-305 8.26e-305
57 MA0591.1 Bach1::Mafk MA0591.1 9.65e-305 8.43e-305
34 MA0150.2 Nfe2l2 MA0150.2 9.69999999999999e-305 8.45e-305
46 MA0142.1 Pou5f1::Sox2 MA0142.1 9.81e-305 8.57e-305
63 MA0792.1 POU5F1B MA0792.1 9.90999999999999e-305 8.66e-305
53 MA0627.2 POU2F3 MA0627.2 9.99999999999999e-306 8.76e-305
30 MA0089.2 MAFG::NFE2L1 MA0089.2 1.05e-305 9.14999999999999e-305
8 MA1135.1 FOSB::JUNB MA1135.1 1.08e-305 9.51999999999999e-305
43 MA0845.1 FOXB1 MA0845.1 1.09e-305 9.53e-305
40 MA1978.1 ZNF354A MA1978.1 1.1e-305 9.57e-305
65 MA1143.1 FOSL1::JUND MA1143.1 7e-303 6.11e-300
66 MA0032.2 FOXC1 MA0032.2 1.43e-295 1.25e-292
67 MA1963.1 SATB1 MA1963.1 3.33e-294 2.92e-291
69 MA0628.1 POU6F1 MA0628.1 4.21e-291 3.68e-288
70 MA0041.2 FOXD3 MA0041.2 1.21e-286 1.06e-283
71 MA1124.1 ZNF24 MA1124.1 1.62e-281 1.42e-278
72 MA0611.2 Dux MA0611.2 2.29e-274 2e-271
74 MA0715.1 PROP1 MA0715.1 8.64e-270 7.56e-267
75 MA0851.1 Foxj3 MA0851.1 4.74e-269 4.14e-266
76 MA1471.1 BARX2 MA1471.1 3.05e-267 2.67e-264
77 MA0084.1 SRY MA0084.1 9.72999999999999e-267 8.51e-264
78 MA1606.1 Foxf1 MA1606.1 1.23e-266 1.08e-263
79 MA1603.1 Dmrt1 MA1603.1 1.65e-266 1.44e-263
80 MA0148.4 FOXA1 MA0148.4 1.73e-266 1.51e-263
81 MA1607.1 Foxl2 MA1607.1 8.15e-266 7.12e-263
82 MA0713.1 PHOX2A MA0713.1 1.06e-265 9.26e-263
83 MA1974.1 ZNF211 MA1974.1 2.44e-265 2.13e-262
84 MA0052.4 MEF2A MA0052.4 3.03e-265 2.65e-262
85 MA0025.2 NFIL3 MA0025.2 2.4e-264 2.1e-261
86 MA1549.1 POU6F1 MA1549.1 3.71e-263 3.25e-260
87 MA0602.1 Arid5a MA0602.1 3.46e-262 3.02e-259
89 MA0793.1 POU6F2 MA0793.1 1.66e-258 1.45e-255
90 MA0601.1 Arid3b MA0601.1 1.18e-257 1.03e-254
91 MA0612.2 EMX1 MA0612.2 6.8e-257 5.95e-254
92 MA0722.1 VAX1 MA0722.1 3.41e-255 2.98e-252
93 MA0847.3 FOXD2 MA0847.3 1.32e-252 1.15e-249
94 MA0901.2 HOXB13 MA0901.2 6.73e-251 5.89e-248
95 MA0613.1 FOXG1 MA0613.1 1.34e-246 1.17e-243
96 MA0910.2 HOXD8 MA0910.2 1.52e-245 1.33e-242
97 MA0723.2 VAX2 MA0723.2 4.09e-245 3.58e-242
98 MA0158.2 HOXA5 MA0158.2 7.57e-245 6.62e-242
99 MA0908.1 HOXD11 MA0908.1 1.07e-239 9.37e-237
100 MA0495.3 MAFF MA0495.3 2.34e-238 2.04e-235
101 MA0710.1 NOTO MA0710.1 2.47e-238 2.16e-235
102 MA1502.1 HOXB8 MA1502.1 3.27e-238 2.86e-235
103 MA1636.1 CEBPG MA1636.1 6.29e-238 5.49e-235
104 MA0706.1 MEOX2 MA0706.1 3e-236 2.63e-233
105 MA0614.1 Foxj2 MA0614.1 2.71e-234 2.37e-231
106 MA0707.2 MNX1 MA0707.2 7.25e-230 6.34e-227
107 MA0031.1 FOXD1 MA0031.1 2.68e-225 2.34e-222
108 MA0849.1 FOXO6 MA0849.1 1.4e-224 1.23e-221
110 MA0724.1 VENTX MA0724.1 1.82e-223 1.59e-220
111 MA0700.2 LHX2 MA0700.2 1.02e-222 8.92e-220
112 MA0047.3 FOXA2 MA0047.3 3.58e-222 3.13e-219
113 MA0043.3 HLF MA0043.3 3.01e-221 2.63e-218
114 MA0132.2 PDX1 MA0132.2 3.46e-221 3.02e-218
115 MA0497.1 MEF2C MA0497.1 4.47e-221 3.91e-218
116 MA0903.1 HOXB3 MA0903.1 3.25e-220 2.84e-217
117 MA1505.1 HOXC8 MA1505.1 4.87e-220 4.25e-217
118 MA0465.2 CDX2 MA0465.2 2.39e-219 2.09e-216
120 MA1495.1 HOXA1 MA1495.1 3.38e-218 2.95e-215
121 MA1152.1 SOX15 MA1152.1 3.74e-218 3.27e-215
122 MA0654.1 ISX MA0654.1 8.74999999999999e-217 7.65e-214
123 MA0042.2 FOXI1 MA0042.2 9.62999999999999e-217 8.42e-214
124 MA1125.1 ZNF384 MA1125.1 1.36e-216 1.19e-213
125 MA0675.1 NKX6-2 MA0675.1 5.76e-216 5.04e-213
126 MA0035.4 GATA1 MA0035.4 3.12e-215 2.72e-212
127 MA1479.1 DMRTC2 MA1479.1 1.25e-214 1.09e-211
128 MA0674.1 NKX6-1 MA0674.1 1.88e-214 1.65e-211
129 MA0661.1 MEOX1 MA0661.1 5.7e-214 4.98e-211
131 MA0033.2 FOXL1 MA0033.2 2.06e-209 1.8e-206
132 MA0122.3 Nkx3-2 MA0122.3 4.12e-208 3.6e-205
133 MA0905.1 HOXC10 MA0905.1 5.01e-205 4.38e-202
134 MA0701.2 LHX9 MA0701.2 2.84e-204 2.48e-201
135 MA1530.1 NKX6-3 MA1530.1 4.82e-204 4.21e-201
136 MA1463.1 ARGFX MA1463.1 4.94e-204 4.32e-201
137 MA0718.1 RAX MA0718.1 3.32e-203 2.9e-200
138 MA0848.1 FOXO4 MA0848.1 3.57e-203 3.12e-200
139 MA1489.1 FOXN3 MA1489.1 5.13e-203 4.48e-200
140 MA0630.1 SHOX MA0630.1 1.55e-202 1.36e-199
141 MA0102.4 CEBPA MA0102.4 1.81e-202 1.58e-199
142 MA0650.3 Hoxa13 MA0650.3 2.63e-202 2.3e-199
143 MA0878.3 CDX1 MA0878.3 1.93e-199 1.68e-196
144 MA1519.1 LHX5 MA1519.1 2.79e-199 2.44e-196
145 MA0682.2 PITX1 MA0682.2 3.07e-198 2.68e-195
146 MA0904.2 HOXB5 MA0904.2 3.89e-198 3.4e-195
147 MA0912.2 HOXD3 MA0912.2 2.04e-197 1.78e-194
148 MA1962.1 POU2F1::SOX2 MA1962.1 2.42e-197 2.12e-194
149 MA0899.1 HOXA10 MA0899.1 1.87e-196 1.63e-193
150 MA0644.2 ESX1 MA0644.2 8.66999999999999e-196 7.58e-193
151 MA0658.1 LHX6 MA0658.1 5.02e-195 4.39e-192
152 MA1481.1 DRGX MA1481.1 9.9e-195 8.65e-192
153 MA0075.3 PRRX2 MA0075.3 1.01e-194 8.82e-192
154 MA0909.3 Hoxd13 MA0909.3 2.72e-194 2.38e-191
155 MA0913.2 HOXD9 MA0913.2 3.79e-194 3.32e-191
156 MA0725.1 VSX1 MA0725.1 1.54e-193 1.35e-190
157 MA1480.1 DPRX MA1480.1 6.76e-192 5.91e-189
158 MA0709.1 Msx3 MA0709.1 6.05e-191 5.29e-188
159 MA1104.2 GATA6 MA1104.2 2.8e-190 2.45e-187
161 MA1970.1 TRPS1 MA1970.1 6.98e-188 6.1e-185
162 MA0151.1 Arid3a MA0151.1 1.83e-187 1.6e-184
163 MA0716.1 PRRX1 MA0716.1 2.43e-187 2.12e-184
164 MA0833.2 ATF4 MA0833.2 7.56e-187 6.6e-184
165 MA0125.1 Nobox MA0125.1 1.51e-186 1.32e-183
166 MA0108.2 TBP MA0108.2 1.66e-185 1.45e-182
167 MA0892.1 GSX1 MA0892.1 6.9e-185 6.03e-182
168 MA1577.1 TLX2 MA1577.1 3.16e-184 2.76e-181
169 MA0880.1 Dlx3 MA0880.1 4.61e-183 4.03e-180
170 MA1103.2 FOXK2 MA1103.2 4.91e-183 4.29e-180
171 MA0027.2 EN1 MA0027.2 1.53e-182 1.34e-179
172 MA1499.1 HOXB4 MA1499.1 1.73e-182 1.51e-179
173 MA0882.1 DLX6 MA0882.1 4.44e-182 3.88e-179
174 MA0868.2 SOX8 MA0868.2 7.1e-182 6.21e-179
175 MA0726.1 VSX2 MA0726.1 7.92e-182 6.92e-179
176 MA0068.2 PAX4 MA0068.2 7.54e-181 6.59e-178
177 MA1563.2 SOX18 MA1563.2 1.24e-180 1.08e-177
178 MA0704.1 Lhx4 MA0704.1 1.34e-180 1.17e-177
179 MA0881.1 Dlx4 MA0881.1 3.86e-180 3.37e-177
180 MA0036.3 GATA2 MA0036.3 2.91e-179 2.54e-176
181 MA0143.4 SOX2 MA0143.4 3.52e-179 3.07e-176
182 MA0836.2 CEBPD MA0836.2 9.95e-179 8.7e-176
183 MA0875.1 BARX1 MA0875.1 4.53e-177 3.96e-174
184 MA0481.3 FOXP1 MA0481.3 8.11e-177 7.09e-174
185 MA1683.1 FOXA3 MA1683.1 2.62e-175 2.29e-172
186 MA0040.1 Foxq1 MA0040.1 2.46e-174 2.15e-171
187 MA0755.1 CUX2 MA0755.1 3.54e-174 3.09e-171
188 MA0077.1 SOX9 MA0077.1 7.81e-174 6.82e-171
189 MA0890.1 GBX2 MA0890.1 2.1e-173 1.83e-170
190 MA0720.1 Shox2 MA0720.1 1.09e-171 9.51e-169
191 MA0721.1 UNCX MA0721.1 1.11e-171 9.66e-169
192 MA0898.1 Hmx3 MA0898.1 7.7e-171 6.73e-168
193 MA0894.1 HESX1 MA0894.1 7.63e-170 6.67e-167
194 MA0717.1 RAX2 MA0717.1 8.06e-169 7.04e-166
195 MA0157.3 Foxo3 MA0157.3 8.09e-169 7.07e-166
196 MA0666.2 MSX1 MA0666.2 2.86e-168 2.5e-165
197 MA0634.1 ALX3 MA0634.1 7.52e-166 6.58e-163
198 MA0900.2 HOXA2 MA0900.2 1.61e-165 1.4e-162
199 MA0874.1 Arx MA0874.1 2.08e-165 1.82e-162
200 MA0854.1 Alx1 MA0854.1 1.01e-163 8.85e-161
201 MA0885.2 Dlx2 MA0885.2 7.14e-163 6.24e-160
202 MA1657.1 ZNF652 MA1657.1 8.97e-163 7.84e-160
203 MA0662.1 MIXL1 MA0662.1 2.55e-162 2.23e-159
204 MA0876.1 BSX MA0876.1 2.57e-162 2.25e-159
205 MA0683.1 POU4F2 MA0683.1 1.55e-161 1.35e-158
206 MA1476.2 Dlx5 MA1476.2 6.37e-161 5.57e-158
207 MA1709.1 ZIM3 MA1709.1 6.52e-161 5.7e-158
208 MA0757.1 ONECUT3 MA0757.1 1.61e-160 1.41e-157
209 MA0911.1 Hoxa11 MA0911.1 7.84e-159 6.85e-156
210 MA0889.1 GBX1 MA0889.1 1.16e-158 1.01e-155
211 MA0853.1 Alx4 MA0853.1 2.14e-158 1.87e-155
212 MA0887.1 EVX1 MA0887.1 8.67e-158 7.58e-155
213 MA1504.1 HOXC4 MA1504.1 4.15e-156 3.62e-153
214 MA1498.2 HOXA7 MA1498.2 4.77e-152 4.17e-149
215 MA0705.1 Lhx8 MA0705.1 4.04e-151 3.53e-148
216 MA0708.2 MSX2 MA0708.2 5.91e-151 5.17e-148
217 MA1496.1 HOXA4 MA1496.1 2.09e-150 1.83e-147
218 MA0879.2 DLX1 MA0879.2 1.04e-149 9.05e-147
219 MA0907.1 HOXC13 MA0907.1 9.08e-149 7.94e-146
220 MA1623.1 Stat2 MA1623.1 2.46e-146 2.15e-143
221 MA0618.1 LBX1 MA0618.1 6.23e-146 5.45e-143
222 MA0895.1 HMBOX1 MA0895.1 1.02e-145 8.9e-143
223 MA0037.4 Gata3 MA0037.4 1.33e-144 1.16e-141
224 MA0070.1 PBX1 MA0070.1 6.84e-144 5.97e-141
225 MA0884.2 DUXA MA0884.2 3.6e-142 3.15e-139
226 MA0754.2 CUX1 MA0754.2 3.75e-142 3.28e-139
227 MA0780.1 PAX3 MA0780.1 9.47e-142 8.28e-139
228 MA1120.1 SOX13 MA1120.1 1.16e-141 1.01e-138
229 MA0442.2 SOX10 MA0442.2 1.52e-141 1.33e-138
230 MA0852.2 FOXK1 MA0852.2 1.56e-141 1.36e-138
231 MA0635.1 BARHL2 MA0635.1 9.17e-139 8.02e-136
232 MA0678.1 OLIG2 MA0678.1 7.49e-137 6.54e-134
233 MA0642.2 EN2 MA0642.2 1.03e-136 9e-134
234 MA0891.1 GSC2 MA0891.1 1.06e-135 9.22e-133
235 MA1707.1 DMRTA1 MA1707.1 3.57e-134 3.12e-131
236 MA1500.1 HOXB6 MA1500.1 6.91e-133 6.04e-130
237 MA0648.1 GSC MA0648.1 5.33e-132 4.66e-129
238 MA0699.1 LBX2 MA0699.1 9.67e-132 8.45e-129
239 MA0842.2 NRL MA0842.2 2.6e-131 2.27e-128
240 MA0117.2 Mafb MA0117.2 7.2e-131 6.29e-128
241 MA1518.2 Lhx1 MA1518.2 9.47e-131 8.28e-128
242 MA1507.1 HOXD4 MA1507.1 1.02e-130 8.93e-128
243 MA0050.3 Irf1 MA0050.3 5.53e-130 4.84e-127
244 MA0850.1 FOXP3 MA0850.1 4.47e-125 3.91e-122
245 MA1562.1 SOX14 MA1562.1 1.2e-124 1.05e-121
246 MA0769.2 TCF7 MA0769.2 1.61e-123 1.41e-120
247 MA1497.1 HOXA6 MA1497.1 2.41e-123 2.1e-120
248 MA0838.1 CEBPG MA0838.1 3.19e-122 2.79e-119
249 MA0843.1 TEF MA0843.1 7.38e-122 6.45e-119
250 MA0135.1 Lhx3 MA0135.1 2.37e-121 2.07e-118
251 MA0144.2 STAT3 MA0144.2 1.12e-119 9.77e-117
252 MA0482.2 GATA4 MA0482.2 1.58e-118 1.38e-115
253 MA1608.1 Isl1 MA1608.1 3.83e-118 3.35e-115
254 MA0621.1 mix-a MA0621.1 2.56e-117 2.24e-114
255 MA0712.2 OTX2 MA0712.2 6.82e-117 5.97e-114
256 MA0523.1 TCF7L2 MA0523.1 7.94e-117 6.94e-114
257 MA0626.1 Npas2 MA0626.1 1.12e-116 9.76e-114
258 MA0606.2 Nfat5 MA0606.2 1.3e-115 1.13e-112
259 MA0593.1 FOXP2 MA0593.1 3.59e-115 3.13e-112
260 MA0893.2 GSX2 MA0893.2 9.27e-115 8.11e-112
261 MA0078.2 Sox17 MA0078.2 1.39e-114 1.22e-111
262 MA0030.1 FOXF2 MA0030.1 1.23e-113 1.08e-110
263 MA0514.2 Sox3 MA0514.2 2.19e-113 1.92e-110
264 MA1960.1 MGA::EVX1 MA1960.1 1.13e-111 9.91e-109
265 MA0906.1 HOXC12 MA0906.1 1.73e-111 1.52e-108
266 MA1729.1 ZNF680 MA1729.1 2.27e-109 1.99e-106
267 MA0480.2 Foxo1 MA0480.2 3.43e-109 3e-106
268 MA0809.2 TEAD4 MA0809.2 1.96e-107 1.72e-104
269 MA0140.2 GATA1::TAL1 MA0140.2 3.01e-107 2.63e-104
270 MA0106.3 TP53 MA0106.3 6.31e-106 5.51e-103
271 MA0766.2 GATA5 MA0766.2 6.37e-105 5.57e-102
272 MA0867.2 SOX4 MA0867.2 1.67e-103 1.46e-100
273 MA1588.1 ZNF136 MA1588.1 3.56e-103 3.11e-100
6 MA1134.1 (FOS::JUNB) MEME-1 NDRTGASTCA 1.97e-305 1.2e-99
274 MA0896.1 Hmx1 MA0896.1 3.4e-102 2.97e-99
275 MA0520.1 Stat6 MA0520.1 9.49e-102 8.3e-99
276 MA1478.1 DMRTA2 MA1478.1 5.52e-100 4.82e-97
277 MA0888.1 EVX2 MA0888.1 1.47e-98 1.29e-95
278 MA0639.1 DBP MA0639.1 1.96e-96 1.71e-93
279 MA0897.1 Hmx2 MA0897.1 2.57e-95 2.25e-92
280 MA0468.1 DUX4 MA0468.1 2.97e-95 2.59e-92
281 MA0768.2 Lef1 MA0768.2 7.38e-94 6.45e-91
282 MA0883.1 Dmbx1 MA0883.1 1.24e-93 1.08e-90
283 MA0515.1 Sox6 MA0515.1 1.63e-93 1.43e-90
284 MA0629.1 Rhox11 MA0629.1 2.37e-93 2.07e-90
285 MA1501.1 HOXB7 MA1501.1 2.58e-93 2.25e-90
286 MA1503.1 HOXB9 MA1503.1 2.24e-89 1.96e-86
287 MA0018.4 CREB1 MA0018.4 2.34e-89 2.05e-86
288 MA0784.2 POU1F1 MA0784.2 3.49e-89 3.05e-86
289 MA0483.1 Gfi1B MA0483.1 4.77e-89 4.17e-86
290 MA0479.1 FOXH1 MA0479.1 9.58e-89 8.38e-86
292 MA0914.1 ISL2 MA0914.1 2.25e-87 1.97e-84
293 MA0837.2 CEBPE MA0837.2 5.29e-86 4.62e-83
294 MA1119.1 SIX2 MA1119.1 5.82e-86 5.09e-83
295 MA0702.2 LMX1A MA0702.2 1.39e-85 1.21e-82
296 MA0631.1 Six3 MA0631.1 1.4e-85 1.22e-82
297 MA1632.1 ATF2 MA1632.1 1.03e-83 8.99e-81
298 MA1150.1 RORB MA1150.1 2.39e-82 2.09e-79
299 MA0711.1 OTX1 MA0711.1 1.3e-81 1.14e-78
300 MA0714.1 PITX3 MA0714.1 3.69e-81 3.22e-78
301 MA0467.2 Crx MA0467.2 1.12e-80 9.76e-78
302 MA1139.1 FOSL2::JUNB MA1139.1 2.93e-80 2.56e-77
303 MA1561.1 SOX12 MA1561.1 4.82e-80 4.21e-77
304 MA0095.3 Yy1 MA0095.3 1.48e-79 1.3e-76
305 MA0087.2 Sox5 MA0087.2 5.68e-79 4.96e-76
306 MA0827.1 OLIG3 MA0827.1 1.3e-78 1.14e-75
307 MA0693.3 Vdr MA0693.3 1.46e-75 1.28e-72
308 MA1580.1 ZBTB32 MA1580.1 7.45e-75 6.51e-72
309 MA0461.2 Atoh1 MA0461.2 4.75e-74 4.15e-71
310 MA0038.2 GFI1 MA0038.2 4.19e-73 3.66e-70
311 MA1126.1 FOS::JUN MA1126.1 3.09e-72 2.7e-69
312 MA1131.1 FOSL2::JUN MA1131.1 2.57e-71 2.25e-68
313 MA1118.1 SIX1 MA1118.1 5.54e-70 4.84e-67
314 MA0063.2 NKX2-5 MA0063.2 9.72e-70 8.49e-67
315 MA0873.1 HOXD12 MA0873.1 1.16e-69 1.01e-66
316 MA0877.3 BARHL1 MA0877.3 1.6e-69 1.4e-66
317 MA0507.2 POU2F2 MA0507.2 2.06e-67 1.8e-64
318 MA1520.1 MAF MA1520.1 2.91e-67 2.55e-64
319 MA0152.2 Nfatc2 MA0152.2 6.03e-67 5.27e-64
320 MA0090.3 TEAD1 MA0090.3 1.29e-66 1.13e-63
321 MA0782.2 PKNOX1 MA0782.2 4.03e-66 3.52e-63
322 MA0861.1 TP73 MA0861.1 4.52e-66 3.95e-63
323 MA1506.1 HOXD10 MA1506.1 2.95e-65 2.58e-62
324 MA0689.1 TBX20 MA0689.1 1.5e-64 1.31e-61
325 MA1127.1 FOSB::JUN MA1127.1 3.89e-64 3.4e-61
326 MA0620.3 MITF MA0620.3 1.61e-63 1.41e-60
327 MA0869.2 Sox11 MA0869.2 2.22e-62 1.94e-59
328 MA0029.1 Mecom MA0029.1 3.19e-62 2.79e-59
329 MA0525.2 TP63 MA0525.2 8.03e-62 7.02e-59
330 MA1991.1 Hnf1A MA1991.1 2.34e-60 2.05e-57
331 MA1112.2 NR4A1 MA1112.2 1.67e-59 1.46e-56
332 MA0772.1 IRF7 MA0772.1 2.03e-59 1.78e-56
333 MA1994.1 Nkx2-1 MA1994.1 6.51e-58 5.69e-55
68 MA1125.1 (ZNF384) MEME-2 TTTTTTTTTTTTTTT 7.38e-294 3.2e-54
334 MA0596.1 SREBF2 MA0596.1 7.77e-57 6.79e-54
335 MA1473.1 CDX4 MA1473.1 1.01e-56 8.83e-54
336 MA0069.1 PAX6 MA0069.1 1.4e-55 1.23e-52
337 MA0624.2 Nfatc1 MA0624.2 1.78e-55 1.55e-52
339 MA1145.1 FOSL2::JUND MA1145.1 2.7e-55 2.36e-52
340 MA0808.1 TEAD3 MA0808.1 1.58e-54 1.38e-51
341 MA0817.1 BHLHE23 MA0817.1 3.45e-53 3.02e-50
342 MA0466.3 CEBPB MA0466.3 6.53e-53 5.7e-50
343 MA1718.1 ZNF8 MA1718.1 1.15e-52 1.01e-49
344 MA0651.2 HOXC11 MA0651.2 2.46e-52 2.15e-49
345 MA1956.1 FOXO1::FLI1 MA1956.1 4.41e-52 3.86e-49
346 MA1151.1 RORC MA1151.1 2.94e-51 2.57e-48
347 MA0492.1 JUND MA0492.1 4.9e-51 4.28e-48
348 MA1720.1 ZNF85 MA1720.1 1.44e-50 1.26e-47
349 MA0773.1 MEF2D MA0773.1 1.77e-50 1.55e-47
350 MA0619.1 LIN54 MA0619.1 2.37e-50 2.07e-47
351 MA1105.2 GRHL2 MA1105.2 5.87e-50 5.13e-47
352 MA0517.1 STAT1::STAT2 MA0517.1 1.37e-49 1.2e-46
353 MA1953.1 FOXO1::ELF1 MA1953.1 2.22e-49 1.94e-46
354 MA1975.1 ZNF214 MA1975.1 6.42e-49 5.61e-46
355 MA1129.1 FOSL1::JUN MA1129.1 8.95e-49 7.82e-46
356 MA0826.1 OLIG1 MA0826.1 1.31e-48 1.15e-45
357 MA0488.1 JUN MA0488.1 5.49e-47 4.8e-44
358 MA0124.2 Nkx3-1 MA0124.2 9.1e-47 7.96e-44
359 MA0829.2 SREBF1 MA0829.2 1.05e-46 9.21e-44
360 MA1108.2 MXI1 MA1108.2 1.06e-46 9.29e-44
361 MA0756.2 ONECUT2 MA0756.2 3.6e-46 3.15e-43
362 MA0594.2 HOXA9 MA0594.2 4.83e-46 4.22e-43
363 MA0660.1 MEF2B MA0660.1 5.97e-46 5.21e-43
364 MA1989.1 Bcl11B MA1989.1 8.43e-46 7.37e-43
365 MA1534.1 NR1I3 MA1534.1 8.93e-46 7.81e-43
366 MA0093.3 USF1 MA0093.3 2.6e-45 2.27e-42
367 MA1547.2 PITX2 MA1547.2 3.1e-42 2.71e-39
45 2-ATRYAT STREME-2 2-ATRYAT 3.94e-305 2.82e-39
369 MA1593.1 ZNF317 MA1593.1 6.77e-41 5.91e-38
371 MA1980.1 ZNF418 MA1980.1 3.7e-39 3.24e-36
372 MA1523.1 MSANTD3 MA1523.1 3.74e-39 3.27e-36
373 MA0595.1 SREBF1 MA0595.1 2.25e-38 1.97e-35
374 MA1421.1 TCF7L1 MA1421.1 2.59e-38 2.26e-35
376 MA0647.1 GRHL1 MA0647.1 4.04e-37 3.53e-34
377 MA1592.1 ZNF274 MA1592.1 4.2e-37 3.67e-34
378 MA1136.1 FOSB::JUNB MA1136.1 2.04e-36 1.78e-33
379 MA0684.2 RUNX3 MA0684.2 3.58e-35 3.13e-32
380 MA1570.1 TFAP4 MA1570.1 4.87e-35 4.26e-32
381 MA1121.1 TEAD2 MA1121.1 4.92e-35 4.3e-32
383 MA1952.1 FOXJ2::ELF1 MA1952.1 9.13e-35 7.98e-32
384 MA0743.2 SCRT1 MA0743.2 1.08e-34 9.4e-32
386 MA0518.1 Stat4 MA0518.1 3.87e-34 3.38e-31
387 MA0719.1 RHOXF1 MA0719.1 4.19e-34 3.66e-31
388 MA1111.1 NR2F2 MA1111.1 3.63e-33 3.18e-30
389 MA0137.3 STAT1 MA0137.3 3.74e-33 3.27e-30
390 MA1618.1 Ptf1a MA1618.1 1.18e-32 1.03e-29
391 MA0687.1 SPIC MA0687.1 1.51e-32 1.32e-29
392 MA0840.1 Creb5 MA0840.1 1.94e-32 1.69e-29
393 MA2001.1 Six4 MA2001.1 2.57e-32 2.25e-29
394 MA0164.1 Nr2e3 MA0164.1 3.14e-32 2.75e-29
61 MA0148.4 (FOXA1) STREME-3 3-AAACAT 9.96e-305 1.14e-28
395 MA0485.2 HOXC9 MA0485.2 1.59e-31 1.39e-28
399 MA1644.1 NFYC MA1644.1 1.67e-28 1.46e-25
401 MA1585.1 ZKSCAN1 MA1585.1 1.84e-27 1.61e-24
402 MA0623.2 NEUROG1 MA0623.2 2.36e-27 2.06e-24
404 MA0703.2 LMX1B MA0703.2 1.99e-26 1.74e-23
33 MA1137.1 (FOSL1::JUNB) STREME-4 4-ATGACTA 2.59e-305 6e-22
405 MA0072.1 RORA MA0072.1 8.03e-25 7.01e-22
406 MA0669.1 NEUROG2 MA0669.1 8.84e-25 7.72e-22
407 MA1521.1 MAFA MA1521.1 1.18e-24 1.03e-21
409 MA0508.3 PRDM1 MA0508.3 5.89e-24 5.15e-21
130 MA0041.2 (FOXD3) STREME-5 5-AAATAA 3.75e-210 9.88e-21
411 MA1524.2 Msgn1 MA1524.2 1.45e-23 1.27e-20
413 MA0607.2 BHLHA15 MA0607.2 3.42e-23 2.99e-20
414 MA0804.1 TBX19 MA0804.1 3.78e-23 3.3e-20
415 MA0498.2 MEIS1 MA0498.2 6.75e-23 5.9e-20
416 MA1123.2 TWIST1 MA1123.2 1.68e-22 1.47e-19
417 MA0800.1 EOMES MA0800.1 4.57e-21 3.99e-18
418 MA0519.1 Stat5a::Stat5b MA0519.1 5.86e-21 5.12e-18
419 MA1624.1 Stat5a MA1624.1 1.88e-20 1.64e-17
420 MA0494.1 Nr1h3::Rxra MA0494.1 2.4e-20 2.1e-17
421 MA1594.1 ZNF382 MA1594.1 5.19e-20 4.53e-17
338 MA1547.2 (PITX2) MEME-3 GCCTGTAATCCCAGC 1.9e-55 4.6e-16
109 6-ATTACA STREME-6 6-ATTACA 2.12e-224 6.37e-16
422 MA1133.1 JUN::JUNB MA1133.1 9.86e-19 8.62e-16
423 MA1148.1 PPARA::RXRA MA1148.1 4.78e-18 4.18e-15
424 TGTGTRTGTGTGTGT MEME-4 TGTGTRTGTGTGTGT 5.63e-18 5.4e-15
425 MA0802.1 TBR1 MA0802.1 1.19e-17 1.04e-14
426 MA1995.1 Npas4 MA1995.1 1.9e-17 1.66e-14
427 MA0698.1 ZBTB18 MA0698.1 2.81e-17 2.46e-14
428 MA0610.1 DMRT3 MA0610.1 5.11e-17 4.47e-14
73 7-WAGAGAW STREME-7 7-WAGAGAW 2.09e-272 1.02e-13
429 MA1587.1 ZNF135 MA1587.1 2.62e-16 2.29e-13
431 MA0114.4 HNF4A MA0114.4 1.31e-15 1.15e-12
432 MA0744.2 SCRT2 MA0744.2 4.1e-15 3.58e-12
433 MA0484.2 HNF4G MA0484.2 4.28e-15 3.74e-12
434 MA0019.1 Ddit3::Cebpa MA0019.1 7.23e-15 6.32e-12
436 MA0818.2 BHLHE22 MA0818.2 1.31e-14 1.14e-11
119 8-BTTSAAV STREME-8 8-BTTSAAV 3.32e-219 2.65e-11
437 MA1114.1 PBX3 MA1114.1 5.01e-14 4.38e-11
438 MA0463.2 BCL6 MA0463.2 1.54e-13 1.34e-10
439 MA0688.1 TBX2 MA0688.1 4.77e-13 4.17e-10
440 MA0770.1 HSF2 MA0770.1 9e-13 7.86e-10
441 MA0071.1 RORA MA0071.1 1.8e-12 1.57e-09
370 MA1596.1 (ZNF460) MEME-5 TTTGGGAGGCYGAGG 9.78e-40 1.8e-09
442 MA1525.2 NFATC4 MA1525.2 9.09e-12 7.94e-09
443 MA0656.1 JDP2 MA0656.1 1.39e-11 1.22e-08
444 MA1955.1 FOXO1::ELK3 MA1955.1 1.62e-11 1.42e-08
445 MA0141.3 ESRRB MA0141.3 2.06e-11 1.8e-08
160 9-AAWWTT STREME-9 9-AAWWTT 3.17e-188 3.66e-08
446 MA0160.2 NR4A2 MA0160.2 6.65e-11 5.82e-08
447 MA0805.1 TBX1 MA0805.1 1.42e-10 1.24e-07
448 MA0066.1 PPARG MA0066.1 3.11e-10 2.72e-07
449 MA1155.1 ZSCAN4 MA1155.1 3.81e-10 3.33e-07
450 MA0866.1 SOX21 MA0866.1 5.77e-10 5.04e-07
451 MA1645.1 NKX2-2 MA1645.1 7.49e-10 6.55e-07
452 MA1996.1 Nr1H2 MA1996.1 1.46e-09 1.27e-06
453 MA1468.1 ATOH7 MA1468.1 1.63e-09 1.43e-06
454 MA0486.2 HSF1 MA0486.2 1.83e-09 1.6e-06
455 MA0002.2 Runx1 MA0002.2 2.46e-09 2.15e-06
457 MA1596.1 ZNF460 MA1596.1 3.92e-09 3.43e-06
458 MA0728.1 Nr2F6 MA0728.1 6.05e-09 5.29e-06
460 MA0060.3 NFYA MA0060.3 7.93e-09 6.93e-06
461 MA0828.2 SREBF2 MA0828.2 9.51e-09 8.31e-06
462 MA1714.1 ZNF675 MA1714.1 1.43e-08 1.25e-05
463 MA0831.3 TFE3 MA0831.3 1.56e-08 1.37e-05
464 MA1625.1 Stat5b MA1625.1 2.37e-08 2.07e-05
25 MA0476.1 (FOS) STREME-10 10-TGANTCA 7.22e-305 2.37e-05
88 MA0108.2 (TBP) STREME-11 11-TWTAWA 2.2e-260 8.9e-05
465 MA1546.1 PAX3 MA1546.1 3.4e-07 0.000297
466 MA0673.1 NKX2-8 MA0673.1 3.88e-07 0.000339
467 MA0870.1 Sox1 MA0870.1 4.78e-07 0.000418
468 MA0797.1 TGIF2 MA0797.1 5.24e-07 0.000458
469 MA0051.1 IRF2 MA0051.1 5.54e-07 0.000485
368 MA1973.1 (ZKSCAN3) STREME-12 12-CCAGCCTGGGCAACA 3.44e-42 0.000486
397 MA1716.1 (ZNF76) STREME-13 13-GCACTTTGGGAGGC 4.92e-29 0.000877
470 MA0130.1 ZNF354C MA0130.1 1.03e-06 0.000897
471 MA1541.1 NR6A1 MA1541.1 1.06e-06 0.00093
472 MA1943.1 ETV2::HOXB13 MA1943.1 1.34e-06 0.00117
473 MA0653.1 IRF9 MA0653.1 1.92e-06 0.00167
474 MA0859.1 Rarg MA0859.1 2.23e-06 0.00195
475 MA1642.1 NEUROG2 MA1642.1 2.61e-06 0.00228
476 MA1467.2 Atoh1 MA1467.2 2.84e-06 0.00248
477 MA1419.1 IRF4 MA1419.1 2.94e-06 0.00257
478 MA0511.2 RUNX2 MA0511.2 3.07e-06 0.00268
479 MA0009.2 TBXT MA0009.2 3.33e-06 0.00291
480 MA1950.1 FLI1::FOXI1 MA1950.1 4.38e-06 0.00383
481 MA1937.1 ERF::HOXB13 MA1937.1 5.36e-06 0.00469
412 14-AGTAGCTGG STREME-14 14-AGTAGCTGG 1.83e-23 0.00473
482 MA1647.2 Prdm4 MA1647.2 5.44e-06 0.00476
483 MA0652.1 IRF8 MA0652.1 8.73e-06 0.00763
484 MA1638.1 HAND2 MA1638.1 9.47e-06 0.00828
396 MA1596.1 (ZNF460) STREME-15 15-CCTGCCTCAGCCTCC 3.15e-29 0.00982
485 MA0691.1 TFAP4 MA0691.1 1.42e-05 0.0124
382 MA1973.1 (ZKSCAN3) MEME-6 TGTYGCCCAGGCTGG 6.21e-35 0.013
486 MA0664.1 MLXIPL MA0664.1 1.49e-05 0.013
487 MA1949.1 FLI1::DRGX MA1949.1 1.57e-05 0.0137
488 MA0592.3 ESRRA MA0592.3 1.64e-05 0.0143
400 MA1596.1 (ZNF460) STREME-17 17-ACCTCTGCCTCCCAG 8.58e-28 0.0245
410 MA1107.2 (KLF9) STREME-16 16-CACACACAC 8.57e-24 0.0245
398 18-ACACAGGCACAC STREME-18 18-ACACAGGCACAC 7.04e-29 0.0255
291 MA1989.1 (Bcl11B) STREME-19 19-AAACCA 1.31e-88 0.027
489 MA0795.1 SMAD3 MA0795.1 3.18e-05 0.0278
490 MA1589.1 ZNF140 MA1589.1 3.45e-05 0.0302
430 20-AGTGCAGTG STREME-20 20-AGTGCAGTG 5.1e-16 0.0303
456 MA0803.1 (TBX15) STREME-21 21-ACACTCACAC 3.08e-09 0.0321
491 MA1579.1 ZBTB26 MA1579.1 4.26e-05 0.0373
492 MA0643.1 Esrrg MA0643.1 4.86e-05 0.0425
375 MA1515.1 (KLF2) STREME-22 22-CCACCACRCCCRGC 1.4e-37 0.0471
459 MA1990.1 (Gli1) STREME-23 23-ACACACCACACACA 7.92e-09 0.0525
408 MA1990.1 (Gli1) STREME-24 24-CACACCACACAC 5.81e-24 0.055
435 25-ACCCACACAC STREME-25 25-ACCCACACAC 1.06e-14 0.0713
385 MA1973.1 (ZKSCAN3) STREME-26 26-AGACCAGCCTGGSC 2.71e-34 0.154
403 MA0803.1 (TBX15) STREME-27 27-AGGTGGGAGGAT 8.18e-27 4.34
# LR_close_200xstreme %>% 
#   dplyr::select(RANK,SIM_MOTIF,ALT_ID, ID,SEA_PVALUE,EVALUE) %>% 
#   arrange(.,EVALUE) %>%
#    dplyr::mutate_if(is.numeric, funs(as.character(signif(., 3)))) %>%
#   # separate(SIM_MOTIF, into= c("SIM_MOTIF", "NAME"), sep= " ") %>% 
#   # dplyr::filter(., EVALUE<0.05) %>% 
#   kable(., caption = "Enriched motifs  in LR close") %>%
#   kable_paper("striped", full_width = TRUE) %>%
#   kable_styling(full_width = FALSE, font_size = 16) %>%
#   scroll_box(height = "800px")
LR_close_200xstreme %>% 
  dplyr::select(RANK,SIM_MOTIF,ALT_ID, ID,SEA_PVALUE,EVALUE) %>% 
  arrange(.,EVALUE) %>%
   dplyr::mutate_if(is.numeric, funs(as.character(signif(., 3)))) %>%
  # separate(SIM_MOTIF, into= c("SIM_MOTIF", "NAME"), sep= " ") %>% 
  # dplyr::filter(., EVALUE<0.05) %>% 
  kable(., caption = "Enriched motifs in LR close, 200bp") %>%
  kable_paper("striped", full_width = TRUE) %>%
  kable_styling(full_width = FALSE, font_size = 16) %>%
  scroll_box(height = "800px")
Enriched motifs in LR close, 200bp
RANK SIM_MOTIF ALT_ID ID SEA_PVALUE EVALUE
3 MA0774.1 MEIS2 MA0774.1 1.5e-109 1.3e-106
6 MA0775.1 MEIS3 MA0775.1 6.73e-67 5.82e-64
8 MA0672.1 NKX2-3 MA0672.1 4.18e-59 3.61e-56
11 MA2003.1 NKX2-4 MA2003.1 4.68e-53 4.05e-50
12 MA0673.1 NKX2-8 MA0673.1 1.63e-52 1.41e-49
325 MA1125.1 (ZNF384) MEME-1 TTTTTTTTTTTTTTT 0.746 1.8e-47
13 MA0789.1 POU3F4 MA0789.1 6.61e-50 5.72e-47
14 MA0766.2 GATA5 MA0766.2 1.5e-48 1.3e-45
15 MA0498.2 MEIS1 MA0498.2 2.82e-46 2.44e-43
16 MA0792.1 POU5F1B MA0792.1 3.06e-44 2.64e-41
18 MA0845.1 FOXB1 MA0845.1 1.04e-42 8.98e-40
19 MA0052.4 MEF2A MA0052.4 1.32e-42 1.14e-39
20 MA0786.1 POU3F1 MA0786.1 1.5e-42 1.29e-39
21 MA0722.1 VAX1 MA0722.1 2.93e-41 2.54e-38
22 MA0124.2 Nkx3-1 MA0124.2 2.44e-40 2.11e-37
24 MA0785.1 POU2F1 MA0785.1 8.52e-40 7.37e-37
25 MA0797.1 TGIF2 MA0797.1 3.67e-39 3.18e-36
26 MA0718.1 RAX MA0718.1 8.36e-39 7.23e-36
27 MA0720.1 Shox2 MA0720.1 8.88e-39 7.68e-36
28 MA0788.1 POU3F3 MA0788.1 1.08e-38 9.38e-36
29 MA1113.2 PBX2 MA1113.2 1.24e-38 1.08e-35
30 MA0710.1 NOTO MA0710.1 1.39e-38 1.2e-35
31 MA0787.1 POU3F2 MA0787.1 1.94e-38 1.68e-35
33 MA0671.1 NFIX MA0671.1 3.39e-38 2.94e-35
34 MA0650.3 Hoxa13 MA0650.3 1.13e-37 9.76e-35
35 MA0627.2 POU2F3 MA0627.2 1.81e-37 1.56e-34
322 MA1723.1 (PRDM9) MEME-2 GGVAGGGVRRGRRRG 0.00232 1.9e-34
36 MA0670.1 NFIA MA0670.1 2.8e-37 2.42e-34
37 MA0630.1 SHOX MA0630.1 3.8e-37 3.29e-34
38 MA0626.1 Npas2 MA0626.1 5.05e-37 4.37e-34
39 MA0704.1 Lhx4 MA0704.1 1.29e-36 1.12e-33
40 MA0725.1 VSX1 MA0725.1 1.82e-36 1.57e-33
41 MA0036.3 GATA2 MA0036.3 1.86e-36 1.61e-33
42 MA1963.1 SATB1 MA1963.1 2.04e-36 1.76e-33
43 MA0031.1 FOXD1 MA0031.1 7.39e-35 6.39e-32
44 MA0809.2 TEAD4 MA0809.2 9.23e-35 7.99e-32
45 MA1104.2 GATA6 MA1104.2 1.42e-34 1.23e-31
46 MA0602.1 Arid5a MA0602.1 1.82e-34 1.57e-31
47 MA0644.2 ESX1 MA0644.2 1.85e-34 1.6e-31
48 MA0901.2 HOXB13 MA0901.2 2.13e-34 1.84e-31
49 MA0047.3 FOXA2 MA0047.3 3.75e-34 3.24e-31
50 MA0808.1 TEAD3 MA0808.1 3.84e-34 3.33e-31
51 MA0700.2 LHX2 MA0700.2 4.45e-34 3.85e-31
52 MA0092.1 Hand1::Tcf3 MA0092.1 7.46e-34 6.45e-31
53 MA0125.1 Nobox MA0125.1 9.09e-34 7.87e-31
54 MA0674.1 NKX6-1 MA0674.1 1.2e-33 1.03e-30
55 MA1978.1 ZNF354A MA1978.1 2.51e-33 2.17e-30
56 MA0790.1 POU4F1 MA0790.1 2.64e-33 2.28e-30
57 MA0846.1 FOXC2 MA0846.1 3.72e-33 3.22e-30
58 MA0084.1 SRY MA0084.1 5.01e-33 4.33e-30
59 MA0680.2 Pax7 MA0680.2 5.8e-33 5.01e-30
60 MA0142.1 Pou5f1::Sox2 MA0142.1 1.2e-32 1.03e-29
61 MA0882.1 DLX6 MA0882.1 1.56e-32 1.35e-29
62 MA0726.1 VSX2 MA0726.1 4.02e-32 3.47e-29
63 MA0497.1 MEF2C MA0497.1 4.55e-32 3.93e-29
64 MA0033.2 FOXL1 MA0033.2 4.99e-32 4.31e-29
65 MA0027.2 EN1 MA0027.2 1.08e-31 9.31e-29
67 MA0465.2 CDX2 MA0465.2 1.63e-31 1.41e-28
68 MA1640.1 MEIS2 MA1640.1 2.4e-31 2.07e-28
69 MA0032.2 FOXC1 MA0032.2 4.1e-31 3.54e-28
70 MA1994.1 Nkx2-1 MA1994.1 7.83e-31 6.77e-28
71 MA0709.1 Msx3 MA0709.1 1.45e-30 1.26e-27
72 MA0675.1 NKX6-2 MA0675.1 2.46e-30 2.13e-27
73 MA1115.1 POU5F1 MA1115.1 2.47e-30 2.13e-27
75 MA1481.1 DRGX MA1481.1 6.93e-30 6e-27
77 MA0077.1 SOX9 MA0077.1 1.96e-29 1.7e-26
78 MA1476.2 Dlx5 MA1476.2 3.61e-29 3.13e-26
79 MA0634.1 ALX3 MA0634.1 7.33e-29 6.34e-26
80 MA0723.2 VAX2 MA0723.2 8.21e-29 7.11e-26
81 MA1563.2 SOX18 MA1563.2 1.22e-28 1.05e-25
82 MA0628.1 POU6F1 MA0628.1 1.45e-28 1.25e-25
83 MA0635.1 BARHL2 MA0635.1 1.84e-28 1.59e-25
84 MA1970.1 TRPS1 MA1970.1 1.94e-28 1.68e-25
85 MA0654.1 ISX MA0654.1 3.13e-28 2.7e-25
86 MA0793.1 POU6F2 MA0793.1 4.06e-28 3.51e-25
87 MA0880.1 Dlx3 MA0880.1 7.21e-28 6.24e-25
88 MA0890.1 GBX2 MA0890.1 8.73e-28 7.55e-25
89 MA0601.1 Arid3b MA0601.1 9.82e-28 8.49e-25
90 MA0885.2 Dlx2 MA0885.2 9.96e-28 8.62e-25
91 MA0495.3 MAFF MA0495.3 1.1e-27 9.49e-25
92 MA1505.1 HOXC8 MA1505.1 3.17e-27 2.74e-24
93 MA0881.1 Dlx4 MA0881.1 3.76e-27 3.25e-24
94 MA1683.1 FOXA3 MA1683.1 7.17e-27 6.2e-24
95 MA1997.1 Olig2 MA1997.1 2.04e-26 1.76e-23
96 MA0894.1 HESX1 MA0894.1 2.27e-26 1.97e-23
97 MA0481.3 FOXP1 MA0481.3 2.66e-26 2.3e-23
98 MA0025.2 NFIL3 MA0025.2 3.08e-26 2.67e-23
99 MA1607.1 Foxl2 MA1607.1 3.73e-26 3.23e-23
100 MA0037.4 Gata3 MA0037.4 6.41e-26 5.55e-23
101 MA0633.2 Twist2 MA0633.2 6.65e-26 5.75e-23
102 MA1993.1 Neurod2 MA1993.1 7.88e-26 6.82e-23
103 MA0132.2 PDX1 MA0132.2 9.28e-26 8.02e-23
104 MA0108.2 TBP MA0108.2 1.17e-25 1.01e-22
106 MA0739.1 Hic1 MA0739.1 2.34e-25 2.02e-22
107 MA1635.1 BHLHE22 MA1635.1 3.55e-25 3.08e-22
108 MA0681.2 PHOX2B MA0681.2 4.44e-25 3.84e-22
109 MA0514.2 Sox3 MA0514.2 4.92e-25 4.26e-22
110 MA0666.2 MSX1 MA0666.2 5.24e-25 4.53e-22
111 MA1103.2 FOXK2 MA1103.2 5.48e-25 4.74e-22
112 MA0679.2 ONECUT1 MA0679.2 5.54e-25 4.79e-22
113 MA0148.4 FOXA1 MA0148.4 6.02e-25 5.21e-22
114 MA0848.1 FOXO4 MA0848.1 9.4e-25 8.14e-22
115 MA0889.1 GBX1 MA0889.1 1.06e-24 9.13e-22
116 MA0783.1 PKNOX2 MA0783.1 1.8e-24 1.56e-21
117 MA1606.1 Foxf1 MA1606.1 1.88e-24 1.62e-21
118 MA0899.1 HOXA10 MA0899.1 2.34e-24 2.03e-21
119 MA1120.1 SOX13 MA1120.1 2.88e-24 2.49e-21
120 MA0041.2 FOXD3 MA0041.2 3.48e-24 3.01e-21
121 MA1152.1 SOX15 MA1152.1 3.68e-24 3.18e-21
122 MA0523.1 TCF7L2 MA0523.1 3.98e-24 3.44e-21
123 MA0791.1 POU4F3 MA0791.1 5.14e-24 4.45e-21
124 MA0724.1 VENTX MA0724.1 7.07e-24 6.11e-21
125 MA1489.1 FOXN3 MA1489.1 7.94e-24 6.86e-21
126 MA0708.2 MSX2 MA0708.2 1.03e-23 8.88e-21
127 MA1471.1 BARX2 MA1471.1 1.36e-23 1.18e-20
128 MA1639.1 MEIS1 MA1639.1 2.21e-23 1.91e-20
129 MA0879.2 DLX1 MA0879.2 2.49e-23 2.15e-20
130 MA0642.2 EN2 MA0642.2 3.06e-23 2.64e-20
131 MA0143.4 SOX2 MA0143.4 4.75e-23 4.11e-20
132 MA0521.2 Tcf12 MA0521.2 7.08e-23 6.13e-20
133 MA0035.4 GATA1 MA0035.4 1.27e-22 1.1e-19
134 MA0769.2 TCF7 MA0769.2 1.89e-22 1.64e-19
135 MA0676.1 Nr2e1 MA0676.1 2.55e-22 2.21e-19
136 MA0886.1 EMX2 MA0886.1 3.26e-22 2.82e-19
137 MA0717.1 RAX2 MA0717.1 3.32e-22 2.87e-19
138 MA0151.1 Arid3a MA0151.1 5.77e-22 5e-19
139 MA0669.1 NEUROG2 MA0669.1 6.39e-22 5.52e-19
140 MA0119.1 NFIC::TLX1 MA0119.1 6.79e-22 5.88e-19
141 MA0876.1 BSX MA0876.1 1.42e-21 1.23e-18
142 MA0868.2 SOX8 MA0868.2 1.6e-21 1.39e-18
143 MA1974.1 ZNF211 MA1974.1 2.34e-21 2.02e-18
144 MA1498.2 HOXA7 MA1498.2 3.75e-21 3.24e-18
145 MA0711.1 OTX1 MA0711.1 4.67e-21 4.04e-18
146 MA1502.1 HOXB8 MA1502.1 5.77e-21 4.99e-18
147 MA0614.1 Foxj2 MA0614.1 6.11e-21 5.29e-18
148 MA0716.1 PRRX1 MA0716.1 8.76e-21 7.58e-18
149 MA1643.1 NFIB MA1643.1 9.17e-21 7.93e-18
150 MA0042.2 FOXI1 MA0042.2 1.25e-20 1.08e-17
151 MA0068.2 PAX4 MA0068.2 2.28e-20 1.97e-17
152 MA0161.2 NFIC MA0161.2 2.53e-20 2.19e-17
153 MA0706.1 MEOX2 MA0706.1 4.33e-20 3.74e-17
154 MA1112.2 NR4A1 MA1112.2 7.35e-20 6.35e-17
155 MA0713.1 PHOX2A MA0713.1 9.3e-20 8.05e-17
156 MA0122.3 Nkx3-2 MA0122.3 1.13e-19 9.78e-17
157 MA0078.2 Sox17 MA0078.2 1.17e-19 1.01e-16
158 MA0648.1 GSC MA0648.1 1.99e-19 1.73e-16
159 MA1121.1 TEAD2 MA1121.1 5.23e-19 4.53e-16
160 MA1608.1 Isl1 MA1608.1 5.72e-19 4.95e-16
161 MA0914.1 ISL2 MA0914.1 7.14e-19 6.18e-16
162 MA0623.2 NEUROG1 MA0623.2 7.84e-19 6.78e-16
163 MA1549.1 POU6F1 MA1549.1 1.29e-18 1.11e-15
164 MA0909.3 Hoxd13 MA0909.3 1.36e-18 1.17e-15
165 MA0461.2 Atoh1 MA0461.2 1.41e-18 1.22e-15
166 MA0910.2 HOXD8 MA0910.2 1.97e-18 1.7e-15
167 MA1497.1 HOXA6 MA1497.1 2.07e-18 1.79e-15
168 MA1636.1 CEBPG MA1636.1 3.28e-18 2.84e-15
169 MA0618.1 LBX1 MA0618.1 5.01e-18 4.33e-15
170 MA1571.1 TGIF2LX MA1571.1 5.93e-18 5.13e-15
171 MA0712.2 OTX2 MA0712.2 6.31e-18 5.46e-15
172 MA1562.1 SOX14 MA1562.1 7.96e-18 6.88e-15
173 MA0090.3 TEAD1 MA0090.3 1.84e-17 1.59e-14
175 MA0898.1 Hmx3 MA0898.1 4.26e-17 3.68e-14
176 MA1960.1 MGA::EVX1 MA1960.1 5.11e-17 4.42e-14
177 MA0667.1 MYF6 MA0667.1 6.66e-17 5.76e-14
178 MA0903.1 HOXB3 MA0903.1 1e-16 8.68e-14
179 MA1645.1 NKX2-2 MA1645.1 5.33e-16 4.61e-13
180 MA1619.1 Ptf1A MA1619.1 5.76e-16 4.98e-13
181 MA0606.2 Nfat5 MA0606.2 6.14e-16 5.31e-13
182 MA0904.2 HOXB5 MA0904.2 1.27e-15 1.1e-12
1 MA0774.1 (MEIS2) STREME-1 1-STGMCAG 2.05e-148 1.54e-12
183 MA1500.1 HOXB6 MA1500.1 1.8e-15 1.56e-12
184 MA0157.3 Foxo3 MA0157.3 1.88e-15 1.62e-12
185 MA0699.1 LBX2 MA0699.1 2.85e-15 2.47e-12
186 MA1487.2 FOXE1 MA1487.2 3.64e-15 3.15e-12
316 MA0496.3 (MAFK) MEME-3 RGGCTGRG 3.76e-05 3.2e-12
187 MA0500.2 MYOG MA0500.2 8.57e-15 7.42e-12
188 MA0063.2 NKX2-5 MA0063.2 9.6e-15 8.3e-12
189 MA0102.4 CEBPA MA0102.4 9.65e-15 8.34e-12
190 MA0849.1 FOXO6 MA0849.1 1.11e-14 9.63e-12
191 MA1480.1 DPRX MA1480.1 1.15e-14 9.97e-12
192 MA0887.1 EVX1 MA0887.1 1.4e-14 1.22e-11
193 MA0140.2 GATA1::TAL1 MA0140.2 1.48e-14 1.28e-11
194 MA1657.1 ZNF652 MA1657.1 1.76e-14 1.52e-11
195 MA1501.1 HOXB7 MA1501.1 2.09e-14 1.81e-11
196 MA0721.1 UNCX MA0721.1 3.17e-14 2.74e-11
197 MA1472.2 Bhlha15 MA1472.2 3.24e-14 2.8e-11
198 MA0826.1 OLIG1 MA0826.1 3.75e-14 3.24e-11
199 MA1504.1 HOXC4 MA1504.1 3.85e-14 3.33e-11
200 MA0682.2 PITX1 MA0682.2 5.53e-14 4.78e-11
201 MA0875.1 BARX1 MA0875.1 6.04e-14 5.23e-11
202 MA1709.1 ZIM3 MA1709.1 6.6e-14 5.7e-11
203 MA0768.2 Lef1 MA0768.2 6.71e-14 5.8e-11
204 MA0892.1 GSX1 MA0892.1 7.57e-14 6.55e-11
2 MA0498.2 (MEIS1) STREME-2 2-CTGTCADCAC 1.93e-116 8.05e-11
205 MA1479.1 DMRTC2 MA1479.1 1.05e-13 9.11e-11
206 MA0897.1 Hmx2 MA0897.1 1.97e-13 1.71e-10
207 MA0714.1 PITX3 MA0714.1 2.07e-13 1.79e-10
208 MA1593.1 ZNF317 MA1593.1 2.28e-13 1.97e-10
209 MA0816.1 Ascl2 MA0816.1 3.86e-13 3.34e-10
210 MA1707.1 DMRTA1 MA1707.1 4.05e-13 3.5e-10
211 MA0738.1 HIC2 MA0738.1 4.32e-13 3.74e-10
212 MA1468.1 ATOH7 MA1468.1 8.28e-13 7.16e-10
213 MA0877.3 BARHL1 MA0877.3 8.69e-13 7.52e-10
214 MA0802.1 TBR1 MA0802.1 9.31e-13 8.06e-10
215 MA0896.1 Hmx1 MA0896.1 1.03e-12 8.91e-10
216 MA0835.2 BATF3 MA0835.2 1.76e-12 1.52e-09
217 MA1641.1 MYF5 MA1641.1 1.81e-12 1.57e-09
218 MA1495.1 HOXA1 MA1495.1 1.88e-12 1.62e-09
219 MA0847.3 FOXD2 MA0847.3 1.93e-12 1.67e-09
220 MA0091.1 TAL1::TCF3 MA0091.1 2.1e-12 1.82e-09
221 MA1463.1 ARGFX MA1463.1 2.39e-12 2.07e-09
222 MA0662.1 MIXL1 MA0662.1 2.62e-12 2.27e-09
324 MA1107.2 (KLF9) MEME-4 GTGTGTGTGTGTGTG 0.651 2.8e-09
223 MA0755.1 CUX2 MA0755.1 3.38e-12 2.92e-09
224 MA0707.2 MNX1 MA0707.2 1.32e-11 1.14e-08
225 MA0018.4 CREB1 MA0018.4 1.43e-11 1.23e-08
226 MA0070.1 PBX1 MA0070.1 1.64e-11 1.42e-08
227 MA0442.2 SOX10 MA0442.2 2.06e-11 1.78e-08
228 MA0715.1 PROP1 MA0715.1 2.68e-11 2.32e-08
229 MA0144.2 STAT3 MA0144.2 3.81e-11 3.3e-08
230 MA0698.1 ZBTB18 MA0698.1 3.91e-11 3.38e-08
231 MA0836.2 CEBPD MA0836.2 4.16e-11 3.6e-08
232 MA0043.3 HLF MA0043.3 4.48e-11 3.88e-08
233 MA0850.1 FOXP3 MA0850.1 5.07e-11 4.38e-08
234 MA0607.2 BHLHA15 MA0607.2 6.01e-11 5.19e-08
4 MA0672.1 (NKX2-3) STREME-3 3-STCAAGTGS 7.96e-82 6.92e-08
235 MA1572.1 TGIF2LY MA1572.1 8.87e-11 7.67e-08
236 MA1478.1 DMRTA2 MA1478.1 8.88e-11 7.68e-08
237 MA0817.1 BHLHE23 MA0817.1 1.06e-10 9.18e-08
238 MA1530.1 NKX6-3 MA1530.1 1.54e-10 1.33e-07
239 MA1588.1 ZNF136 MA1588.1 1.55e-10 1.34e-07
240 MA0832.1 Tcf21 MA0832.1 1.56e-10 1.35e-07
241 MA0095.3 Yy1 MA0095.3 1.88e-10 1.63e-07
23 4-AWATWT STREME-4 4-AWATWT 5.35e-40 2.23e-07
242 MA0891.1 GSC2 MA0891.1 3.27e-10 2.83e-07
243 MA0060.3 NFYA MA0060.3 3.74e-10 3.23e-07
244 MA1991.1 Hnf1A MA1991.1 4.66e-10 4.03e-07
245 MA0482.2 GATA4 MA0482.2 5.42e-10 4.68e-07
246 MA0867.2 SOX4 MA0867.2 9.75e-10 8.43e-07
247 MA1603.1 Dmrt1 MA1603.1 1.02e-09 8.78e-07
248 MA0827.1 OLIG3 MA0827.1 1.16e-09 1e-06
249 MA0624.2 Nfatc1 MA0624.2 1.38e-09 1.19e-06
250 MA0893.2 GSX2 MA0893.2 1.57e-09 1.36e-06
251 MA1528.1 NFIX MA1528.1 2.37e-09 2.05e-06
252 MA0597.2 THAP1 MA0597.2 2.51e-09 2.17e-06
253 MA0851.1 Foxj3 MA0851.1 2.54e-09 2.2e-06
254 MA0462.2 BATF::JUN MA0462.2 2.56e-09 2.22e-06
255 MA0902.2 HOXB2 MA0902.2 2.65e-09 2.29e-06
256 MA0629.1 Rhox11 MA0629.1 3.14e-09 2.72e-06
257 MA0678.1 OLIG2 MA0678.1 3.18e-09 2.75e-06
258 MA0818.2 BHLHE22 MA0818.2 3.4e-09 2.94e-06
259 MA1518.2 Lhx1 MA1518.2 4.34e-09 3.75e-06
260 MA0152.2 Nfatc2 MA0152.2 4.39e-09 3.8e-06
261 MA1634.1 BATF MA1634.1 4.8e-09 4.15e-06
262 MA0480.2 Foxo1 MA0480.2 5.59e-09 4.83e-06
10 MA1960.1 (MGA::EVX1) STREME-5 5-TGATAA 1.67e-54 5.13e-06
7 MA0161.2 (NFIC) STREME-6 6-GCWTGGCA 7.5e-66 5.38e-06
263 MA1644.1 NFYC MA1644.1 6.72e-09 5.82e-06
264 MA0050.3 Irf1 MA0050.3 7.31e-09 6.32e-06
265 MA1720.1 ZNF85 MA1720.1 8.15e-09 7.05e-06
5 7-SCAGVCA STREME-7 7-SCAGVCA 5.41e-77 7.45e-06
266 MA1524.2 Msgn1 MA1524.2 1.36e-08 1.18e-05
267 MA0502.2 NFYB MA0502.2 1.56e-08 1.35e-05
268 MA1975.1 ZNF214 MA1975.1 1.76e-08 1.52e-05
269 MA0158.2 HOXA5 MA0158.2 1.92e-08 1.66e-05
32 MA0769.2 (TCF7) STREME-8 8-TTCAAA 2.97e-38 1.7e-05
271 MA0833.2 ATF4 MA0833.2 2.13e-08 1.84e-05
272 MA1638.1 HAND2 MA1638.1 2.32e-08 2e-05
273 MA0895.1 HMBOX1 MA0895.1 2.75e-08 2.38e-05
275 MA0911.1 Hoxa11 MA0911.1 3.3e-08 2.85e-05
276 MA0905.1 HOXC10 MA0905.1 3.3e-08 2.85e-05
277 MA0842.2 NRL MA0842.2 3.38e-08 2.92e-05
278 MA1118.1 SIX1 MA1118.1 3.8e-08 3.28e-05
306 MA0471.2 (E2F6) MEME-5 CAGGCTGGAGKGCAG 9.7e-06 4.5e-05
279 MA0853.1 Alx4 MA0853.1 6.82e-08 5.9e-05
280 MA0854.1 Alx1 MA0854.1 7.26e-08 6.28e-05
281 MA0852.2 FOXK1 MA0852.2 7.93e-08 6.86e-05
282 MA0805.1 TBX1 MA0805.1 9.89e-08 8.56e-05
283 MA1547.2 PITX2 MA1547.2 1.06e-07 9.2e-05
323 MA1107.2 (KLF9) MEME-6 TGTGTGTGTGTGTGT 0.168 0.00011
284 MA1573.2 Thap11 MA1573.2 1.31e-07 0.000113
285 MA1623.1 Stat2 MA1623.1 1.44e-07 0.000125
286 MA0900.2 HOXA2 MA0900.2 1.44e-07 0.000125
287 MA1153.1 Smad4 MA1153.1 1.47e-07 0.000127
288 MA1728.1 ZNF549 MA1728.1 1.87e-07 0.000162
289 MA0803.1 TBX15 MA0803.1 1.87e-07 0.000162
290 MA0661.1 MEOX1 MA0661.1 2.72e-07 0.000235
17 MA1645.1 (NKX2-2) STREME-9 9-CCWCTCA 1.67e-43 0.000328
291 MA0830.2 TCF4 MA0830.2 4.26e-07 0.000368
292 MA1114.1 PBX3 MA1114.1 5.05e-07 0.000437
293 MA0160.2 NR4A2 MA0160.2 5.15e-07 0.000445
294 MA0754.2 CUX1 MA0754.2 9.36e-07 0.00081
295 MA1625.1 Stat5b MA1625.1 9.56e-07 0.000827
296 MA0690.2 TBX21 MA0690.2 1.73e-06 0.0015
297 MA0693.3 Vdr MA0693.3 1.81e-06 0.00157
298 MA1618.1 Ptf1a MA1618.1 2.46e-06 0.00213
299 MA0878.3 CDX1 MA0878.3 2.82e-06 0.00244
300 MA1125.1 ZNF384 MA1125.1 3.15e-06 0.00272
174 MA1731.1 (ZNF768) STREME-10 10-CCAGAG 3.54e-17 0.00332
301 MA1467.2 Atoh1 MA1467.2 4e-06 0.00346
302 MA0668.2 Neurod2 MA0668.2 7.32e-06 0.00633
303 MA0087.2 Sox5 MA0087.2 7.53e-06 0.00652
304 MA1519.1 LHX5 MA1519.1 8.25e-06 0.00714
305 MA1102.2 CTCFL MA1102.2 9.15e-06 0.00791
9 MA0739.1 (Hic1) STREME-11 11-TGCCAMT 2.37e-57 0.00824
105 MA0668.2 (Neurod2) STREME-12 12-ATCTGK 1.65e-25 0.00947
274 13-ATTGGAG STREME-13 13-ATTGGAG 2.97e-08 0.0102
307 MA0883.1 Dmbx1 MA0883.1 1.43e-05 0.0124
308 MA1953.1 FOXO1::ELF1 MA1953.1 1.64e-05 0.0142
309 MA0860.1 Rarg MA0860.1 1.66e-05 0.0144
310 MA1108.2 MXI1 MA1108.2 1.7e-05 0.0147
311 MA0719.1 RHOXF1 MA0719.1 1.92e-05 0.0166
312 MA1581.1 ZBTB6 MA1581.1 1.93e-05 0.0167
76 MA0138.2 (REST) STREME-14 14-CTGTCCA 1.76e-29 0.0168
313 MA0083.3 SRF MA0083.3 2.47e-05 0.0214
314 MA0907.1 HOXC13 MA0907.1 2.57e-05 0.0222
315 MA0688.1 TBX2 MA0688.1 3.12e-05 0.027
317 MA1567.2 Tbx6 MA1567.2 3.96e-05 0.0343
318 MA1151.1 RORC MA1151.1 4.02e-05 0.0348
319 MA1124.1 ZNF24 MA1124.1 4.1e-05 0.0355
74 MA0773.1 (MEF2D) STREME-15 15-AATAGA 3.97e-30 0.0359
320 MA1119.1 SIX2 MA1119.1 4.63e-05 0.04
66 16-AGTGCTR STREME-16 16-AGTGCTR 1.37e-31 1.19
270 17-TACWGTA STREME-17 17-TACWGTA 2.12e-08 1.23
321 MA0161.2 (NFIC) STREME-18 18-TCTTGGCCCA 0.00101 3.92
### selecting just the list of names and checking for expression

All enriched motifs found

This area was for all motifs found in Xstreme analysis using NR peaks as background. #### EAR ##### EAR_open

mrc_palette <- c(
    "EAR_open" = "#F8766D",
    "EAR_close" = "#f6483c",
    "ESR_open" = "#7CAE00",
    "ESR_close" = "#587b00",
    "ESR_C"="grey40",
     "ESR_opcl"="grey40",
    "ESR_D"="tan",
     "ESR_clop"="tan",
     "ESR_OC" = "#6a9500",
     "LR_open" = "#00BFC4",
     "LR_close" = "#008d91",
     "NR" = "#C77CFF"
  )

 # spd_EARo<-EAR_open_xstreme%>% 
 #   mutate(CONSENSUS=gsub('[[:digit:]]+-', '', CONSENSUS)) %>% 
 #  dplyr::filter(EVALUE<0.05) %>% 
 #  left_join(., (sea_EAR_open %>%
 #                  # dplyr::rename("SEA_PVALUE"=PVALUE) %>%
 #                  dplyr::select(RANK,ID:PVALUE)),
 #            by= c("RANK"="RANK", "ALT_ID"="ALT_ID", "CONSENSUS"="CONSENSUS",  "ID"="ID")) %>% 
 #  separate(SIM_MOTIF, into= c("SIM_MOTIF", "NAME"), sep= " ") %>% 
 #  mutate(motif_name= gsub("[()]","",NAME), mrc="EAR_open") %>%
 #  mutate(motif_name=
 #           if_else(is.na(motif_name)&str_detect(SIM_MOTIF,"^M"),ALT_ID,
 #           if_else(is.na(motif_name),ID,motif_name))) 
 
 spd_EARo_200<-EAR_open_200xstreme%>% 
   mutate(CONSENSUS=gsub('[[:digit:]]+-', '', CONSENSUS)) %>% 
  dplyr::filter(EVALUE<0.05) %>% 
  left_join(., (sea_EAR_open_200_p2 %>%
                  anti_join(.,sea_EAR_open_200, by = c("ID"="ID","ALT_ID"="ALT_ID")) %>%
  rbind(sea_EAR_open_200) %>% 
  dplyr::select(DB:LOG_QVALUE)), by= c( "ALT_ID"="ALT_ID", "CONSENSUS"="CONSENSUS","ID"="ID"))%>% 
  separate(SIM_MOTIF, into= c("SIM_MOTIF", "NAME"), sep= " ") %>% 
  mutate(motif_name= gsub("[()]","",NAME), mrc="EAR_open") %>%
  mutate(motif_name=
           if_else(is.na(motif_name)&str_detect(SIM_MOTIF,"^M"),ALT_ID,
           if_else(is.na(motif_name),ID,motif_name))) 
 #### breaks 
# spd_EARc <- EAR_close_xstreme%>% 
#    mutate(CONSENSUS=gsub('[[:digit:]]+-', '', CONSENSUS)) %>% 
#   dplyr::filter(EVALUE<0.05) %>% 
#   left_join(., (sea_EAR_close %>%
#                   # dplyr::rename("SEA_PVALUE"=PVALUE) %>%
#                   dplyr::select(RANK,ID:PVALUE)),
#             by= c("RANK"="RANK", "ALT_ID"="ALT_ID", "CONSENSUS"="CONSENSUS",  "ID"="ID")) %>% 
#   separate(SIM_MOTIF, into= c("SIM_MOTIF", "NAME"), sep= " ") %>% 
#   mutate(motif_name= gsub("[()]","",NAME), mrc="EAR_close") %>%
#   mutate(motif_name=
#            if_else(is.na(motif_name)&str_detect(SIM_MOTIF,"^M"),ALT_ID,
#            if_else(is.na(motif_name),ID,motif_name)))

spd_EARc_200 <- EAR_close_200xstreme%>% 
   mutate(CONSENSUS=gsub('[[:digit:]]+-', '', CONSENSUS)) %>% 
  dplyr::filter(EVALUE<0.05) %>% 
  left_join(., (sea_EAR_close_200_p2 %>%
                  anti_join(.,sea_EAR_close_200, by = c("ID"="ID","ALT_ID"="ALT_ID")) %>%
  rbind(sea_EAR_close_200) %>% 
  dplyr::select(DB:LOG_QVALUE)), by= c( "ALT_ID"="ALT_ID", "CONSENSUS"="CONSENSUS","ID"="ID"))%>% 
  separate(SIM_MOTIF, into= c("SIM_MOTIF", "NAME"), sep= " ") %>% 
  mutate(motif_name= gsub("[()]","",NAME), mrc="EAR_close") %>%
  mutate(motif_name=
           if_else(is.na(motif_name)&str_detect(SIM_MOTIF,"^M"),ALT_ID,
           if_else(is.na(motif_name),ID,motif_name)))


##### breaks
# spd_ESRo <-ESR_open_xstreme%>%
#    mutate(CONSENSUS=gsub('[[:digit:]]+-', '', CONSENSUS)) %>% 
#   dplyr::filter(EVALUE<0.05) %>% 
#   left_join(., (sea_ESR_open %>%
#                   # dplyr::rename("SEA_PVALUE"=PVALUE) %>%
#                   dplyr::select(RANK,ID:PVALUE)),
#             by= c("RANK"="RANK", "ALT_ID"="ALT_ID", "CONSENSUS"="CONSENSUS",  "ID"="ID"))%>% 
#   separate(SIM_MOTIF, into= c("SIM_MOTIF", "NAME"), sep= " ") %>% 
#   mutate(motif_name= gsub("[()]","",NAME), mrc="ESR_open") %>%
#   mutate(motif_name=
#            if_else(is.na(motif_name)&str_detect(SIM_MOTIF,"^M"),ALT_ID,
#            if_else(is.na(motif_name),ID,motif_name)))

spd_ESRo_200 <-ESR_open_200xstreme%>%
   mutate(CONSENSUS=gsub('[[:digit:]]+-', '', CONSENSUS)) %>%
  dplyr::filter(EVALUE<0.05) %>%
  left_join(., (sea_ESR_open_200_p2 %>%
                  anti_join(.,sea_ESR_open_200, by = c("ID"="ID","ALT_ID"="ALT_ID")) %>%
  rbind(sea_ESR_open_200) %>% 
  dplyr::select(DB:LOG_QVALUE)), by= c( "ALT_ID"="ALT_ID", "CONSENSUS"="CONSENSUS","ID"="ID"))%>% 
  separate(SIM_MOTIF, into= c("SIM_MOTIF", "NAME"), sep= " ") %>% 
  mutate(motif_name= gsub("[()]","",NAME), mrc="ESR_open") %>%
  mutate(motif_name=
           if_else(is.na(motif_name)&str_detect(SIM_MOTIF,"^M"),ALT_ID,
           if_else(is.na(motif_name),ID,motif_name)))
# spd_ESRc <- ESR_close_xstreme%>% 
#    mutate(CONSENSUS=gsub('[[:digit:]]+-', '', CONSENSUS)) %>% 
#   dplyr::filter(EVALUE<0.05) %>% 
#   left_join(., (sea_ESR_close %>%
#                   # dplyr::rename("SEA_PVALUE"=PVALUE) %>%
#                   dplyr::select(RANK,ID:PVALUE)),
#             by= c("RANK"="RANK", "ALT_ID"="ALT_ID", "CONSENSUS"="CONSENSUS",  "ID"="ID")) %>% 
#   separate(SIM_MOTIF, into= c("SIM_MOTIF", "NAME"), sep= " ") %>% 
#   mutate(motif_name= gsub("[()]","",NAME), mrc="ESR_close") %>%
#   mutate(motif_name=
#            if_else(is.na(motif_name)&str_detect(SIM_MOTIF,"^M"),ALT_ID,
#            if_else(is.na(motif_name),ID,motif_name)))

spd_ESRc_200 <- ESR_close_200xstreme%>% 
   mutate(CONSENSUS=gsub('[[:digit:]]+-', '', CONSENSUS)) %>% 
  dplyr::filter(EVALUE<0.05) %>% 
  left_join(., (sea_ESR_close_200_p2 %>%
                  anti_join(.,sea_ESR_close_200, by = c("ID"="ID","ALT_ID"="ALT_ID")) %>%
  rbind(sea_ESR_close_200) %>% 
  dplyr::select(DB:LOG_QVALUE)), by= c( "ALT_ID"="ALT_ID", "CONSENSUS"="CONSENSUS","ID"="ID"))%>% 
  separate(SIM_MOTIF, into= c("SIM_MOTIF", "NAME"), sep= " ") %>% 
  mutate(motif_name= gsub("[()]","",NAME), mrc="ESR_close") %>%
  mutate(motif_name=
           if_else(is.na(motif_name)&str_detect(SIM_MOTIF,"^M"),ALT_ID,
           if_else(is.na(motif_name),ID,motif_name)))


# spd_ESRoc <-ESR_OC_xstreme%>% 
#    mutate(CONSENSUS=gsub('[[:digit:]]+-', '', CONSENSUS)) %>% 
#   dplyr::filter(EVALUE<0.05) %>% 
#   left_join(., (sea_ESR_OC %>%
#                   # dplyr::rename("SEA_PVALUE"=PVALUE) %>%
#                   dplyr::select(RANK,ID:PVALUE)),
#             by= c("RANK"="RANK", "ALT_ID"="ALT_ID", "CONSENSUS"="CONSENSUS",  "ID"="ID")) %>% 
#   separate(SIM_MOTIF, into= c("SIM_MOTIF", "NAME"), sep= " ") %>% 
#   mutate(motif_name= gsub("[()]","",NAME), mrc="ESR_OC") %>%
#   mutate(motif_name=
#            if_else(is.na(motif_name)&str_detect(SIM_MOTIF,"^M"),ALT_ID,
#            if_else(is.na(motif_name),ID,motif_name)))
# #######rbind break too

spd_ESRopcl_200<-ESR_opcl_xstreme%>% 
   mutate(CONSENSUS=gsub('[[:digit:]]+-', '', CONSENSUS)) %>% 
  dplyr::filter(EVALUE<0.05) %>% 
  left_join(., (sea_ESR_opcl_200_p2 %>%
                  anti_join(.,sea_ESR_opcl_200, by = c("ID"="ID","ALT_ID"="ALT_ID")) %>%
  rbind(sea_ESR_opcl_200) %>% 
  dplyr::select(DB:LOG_QVALUE)), by= c( "ALT_ID"="ALT_ID", "CONSENSUS"="CONSENSUS","ID"="ID"))%>% 
  separate(SIM_MOTIF, into= c("SIM_MOTIF", "NAME"), sep= " ") %>% 
  mutate(motif_name= gsub("[()]","",NAME), mrc="ESR_opcl") %>%
  mutate(motif_name=
           if_else(is.na(motif_name)&str_detect(SIM_MOTIF,"^M"),ALT_ID,
           if_else(is.na(motif_name),ID,motif_name)))

#### break for clop!

spd_ESRclop_200<-ESR_clop_xstreme%>% 
   mutate(CONSENSUS=gsub('[[:digit:]]+-', '', CONSENSUS)) %>% 
  dplyr::filter(EVALUE<0.05) %>% 
  left_join(., (sea_ESR_clop_200_p2 %>%
                  anti_join(.,sea_ESR_clop_200, by = c("ID"="ID","ALT_ID"="ALT_ID")) %>%
  rbind(sea_ESR_clop_200) %>% 
  dplyr::select(DB:LOG_QVALUE)), by= c( "ALT_ID"="ALT_ID", "CONSENSUS"="CONSENSUS","ID"="ID"))%>% 
  separate(SIM_MOTIF, into= c("SIM_MOTIF", "NAME"), sep= " ") %>% 
  mutate(motif_name= gsub("[()]","",NAME), mrc="ESR_clop") %>%
  mutate(motif_name=
           if_else(is.na(motif_name)&str_detect(SIM_MOTIF,"^M"),ALT_ID,
           if_else(is.na(motif_name),ID,motif_name))) 
#opcl

###rbind break#####
# spd_LRo <-LR_open_xstreme%>%
#            mutate(CONSENSUS=gsub('[[:digit:]]+-', '', CONSENSUS)) %>% 
#   dplyr::filter(EVALUE<0.05) %>% 
#   left_join(., (sea_LR_open %>%
#                   # dplyr::rename("SEA_PVALUE"=PVALUE) %>%
#                   dplyr::select(RANK,ID:PVALUE)),
#             by= c("RANK"="RANK", "ALT_ID"="ALT_ID", "CONSENSUS"="CONSENSUS",  "ID"="ID")) %>% 
#   separate(SIM_MOTIF, into= c("SIM_MOTIF", "NAME"), sep= " ") %>% 
#   mutate(motif_name= gsub("[()]","",NAME), mrc="LR_open") %>%
#   mutate(motif_name=
#            if_else(is.na(motif_name)&str_detect(SIM_MOTIF,"^M"),ALT_ID,  if_else(is.na(motif_name),ID,motif_name)))

spd_LRo_200 <-LR_open_200xstreme%>%
           mutate(CONSENSUS=gsub('[[:digit:]]+-', '', CONSENSUS)) %>% 
  dplyr::filter(EVALUE<0.05) %>% 
  left_join(., (sea_LR_open_200_p2 %>%
                  anti_join(.,sea_LR_open_200, by = c("ID"="ID","ALT_ID"="ALT_ID")) %>%
  rbind(sea_LR_open_200) %>% 
  dplyr::select(DB:LOG_QVALUE)), by= c( "ALT_ID"="ALT_ID", "CONSENSUS"="CONSENSUS","ID"="ID"))%>% 
  separate(SIM_MOTIF, into= c("SIM_MOTIF", "NAME"), sep= " ") %>% 
  mutate(motif_name= gsub("[()]","",NAME), mrc="LR_open") %>%
  mutate(motif_name=
           if_else(is.na(motif_name)&str_detect(SIM_MOTIF,"^M"),ALT_ID,  if_else(is.na(motif_name),ID,motif_name)))
 
### rbind break
# spd_LRc <- LR_close_xstreme%>% 
#    mutate(CONSENSUS=gsub('[[:digit:]]+-', '', CONSENSUS)) %>% 
#   dplyr::filter(EVALUE<0.05) %>% 
#   left_join(., (sea_LR_close %>%
#                   # dplyr::rename("SEA_PVALUE"=PVALUE) %>%
#                   dplyr::select(RANK,ID:PVALUE)),
#             by= c("RANK"="RANK", "ALT_ID"="ALT_ID", "CONSENSUS"="CONSENSUS",  "ID"="ID")) %>% 
#   separate(SIM_MOTIF, into= c("SIM_MOTIF", "NAME"), sep= " ") %>% 
#   mutate(motif_name= gsub("[()]","",NAME), mrc="LR_close") %>%
#   mutate(motif_name=
#            if_else(is.na(motif_name)&str_detect(SIM_MOTIF,"^M"),ALT_ID,
#            if_else(is.na(motif_name),ID,motif_name)))

spd_LRc_200 <- LR_close_200xstreme%>% 
   mutate(CONSENSUS=gsub('[[:digit:]]+-', '', CONSENSUS)) %>% 
  dplyr::filter(EVALUE<0.05) %>% 
  left_join(., (sea_LR_close_200_p2 %>%
                  anti_join(.,sea_LR_close_200, by = c("ID"="ID","ALT_ID"="ALT_ID")) %>%
  rbind(sea_LR_close_200) %>% 
  dplyr::select(DB:LOG_QVALUE)), by= c( "ALT_ID"="ALT_ID", "CONSENSUS"="CONSENSUS","ID"="ID"))%>% 
  separate(SIM_MOTIF, into= c("SIM_MOTIF", "NAME"), sep= " ") %>% 
  mutate(motif_name= gsub("[()]","",NAME), mrc="LR_close") %>%
  mutate(motif_name=
           if_else(is.na(motif_name)&str_detect(SIM_MOTIF,"^M"),ALT_ID,
           if_else(is.na(motif_name),ID,motif_name)))

# spec_dataframe <- spd_EARo %>% 
#   rbind(spd_EARc) %>% 
#   rbind(spd_ESRo) %>%
#    rbind(spd_ESRc) %>% 
#    rbind(spd_ESRoc) %>% 
#    rbind(spd_LRo) %>% 
#    rbind(spd_LRc)

spec_dataframe_200 <- spd_EARo_200 %>% 
  rbind(spd_EARc_200) %>% 
  rbind(spd_ESRo_200) %>%
   rbind(spd_ESRc_200) %>%
  rbind(spd_ESRopcl_200) %>% 
  rbind(spd_ESRclop_200) %>% 
   rbind(spd_LRo_200) %>% 
   rbind(spd_LRc_200)
spec_dataframe_200 %>% 
  dplyr::filter(mrc=="ESR_opcl")
# A tibble: 13 × 31
   RANK  SEED_MOTIF CLUSTER SOURCE ID    ALT_ID CONSENSUS WIDTH SITES SEA_PVALUE
   <chr>      <dbl>   <dbl> <chr>  <chr> <chr>  <chr>     <dbl> <dbl>      <dbl>
 1 2              1       2 MEME   AARW… MEME-1 AARWADAA…    15    52   1.73e-11
 2 4              1       4 ../mo… MA07… POU3F4 TATGCWAAT     9    77   5.29e- 8
 3 5              0       4 ../mo… MA07… POU3F2 WTATGCWA…    12    80   3.21e- 7
 4 6              1       5 ../mo… MA00… NKX2-5 NNCACTCA…    11    74   4.29e- 7
 5 7              1       6 ../mo… MA06… Nr2e1  AAAAGTCAA     9    81   4.70e- 7
 6 8              0       4 ../mo… MA05… POU2F2 AWTATGCA…    14    37   7.47e- 6
 7 10             0       4 ../mo… MA07… POU5F… TATGCWAAT     9    64   8.05e- 6
 8 11             1       8 ../mo… MA14… BARX2  NWWAAYMA…    12    84   8.51e- 6
 9 12             0       4 ../mo… MA07… POU3F3 WWTATGCW…    13    73   1.59e- 5
10 13             1       9 ../mo… MA09… HOXD9  GYMATAAA…    10    67   4.43e- 5
11 14             1      10 ../mo… MA07… POU4F1 ATGMATAA…    14    69   4.52e- 5
12 15             0       5 ../mo… MA04… CDX2   NDGCAATA…    12    54   4.76e- 5
13 16             1      11 MEME   GTGT… MEME-2 GTGTGTRT…    15    13   7.5 e- 2
# ℹ 21 more variables: EVALUE.x <dbl>, EVALUE_ACC <dbl>, SIM_SOURCE <chr>,
#   SIM_MOTIF <chr>, NAME <chr>, MOTIF_URL <chr>, DB <chr>, TP <dbl>,
#   `TP%` <dbl>, FP <dbl>, `FP%` <dbl>, ENR_RATIO <dbl>, SCORE_THR <dbl>,
#   PVALUE <dbl>, LOG_PVALUE <dbl>, EVALUE.y <dbl>, LOG_EVALUE <dbl>,
#   QVALUE <dbl>, LOG_QVALUE <dbl>, motif_name <chr>, mrc <chr>
# saveRDS(spec_dataframe_200,"data/Final_four_data/spec_dataframe_200.RDS")
spec_dataframe_200 <- readRDS("data/Final_four_data/spec_dataframe_200.RDS")

data plots from full sequences

###plotting 
# spec_dataframe %>% 
#  ggplot(.,aes(x=mrc,y=ENR_RATIO,fill=mrc))+
#   geom_boxplot()+ 
#    geom_hline(yintercept=1.2, col="red")+
#   theme_classic()+
#   ylab("Enrichment ratio")+
#   ggtitle("Enrichment ratio values across MRC")+
#   scale_fill_manual(values=mrc_palette)
# spec_dataframe %>% 
#   ggplot(., aes(x=ENR_RATIO, fill = mrc))+
#   geom_density(aes(alpha=0.4)) +
#    theme_classic()+
#   xlab("Enrichment ratio")+
#   ggtitle("Enrichment ratio histogram MRC")+
#   scale_fill_manual(values=mrc_palette)+
#   coord_cartesian(xlim=c(1,5))

# spec_dataframe %>% 
#   # dplyr::filter(mrc=="LR_open") %>% 
#   ggplot(., aes(x=mrc, y=-log(base=10,EVALUE), color=mrc))+
#     geom_jitter()+
#   theme_classic()+
#   ylab(expression("-log[10] Evalue"))+
#   ggtitle("Significant values across MRC motifs")+
#   scale_color_manual(values=mrc_palette)
# 
# spec_dataframe %>% 
#   # dplyr::filter(mrc=="LR_open") %>% 
#   ggplot(., aes(x=ENR_RATIO, y=-log(base=10,EVALUE), color=mrc))+
#     geom_point(alpha=0.3)+
#   theme_classic()+
#   ylab(expression("-log[10] Evalue"))+
#   ggtitle("Enrichment ratio against significance")+
#   scale_color_manual(values=mrc_palette)

data plots from 200 bp sequences

###plotting 
spec_dataframe_200 %>% 
 ggplot(.,aes(x=mrc,y=ENR_RATIO,fill=mrc))+
  geom_boxplot()+
   geom_hline(yintercept=1.2, col="red")+
  theme_classic()+
  ylab("Enrichment ratio")+
  ggtitle("Enrichment ratio values across MRC_200")+
  scale_fill_manual(values=mrc_palette)

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
f9c15bd reneeisnowhere 2024-10-12
d8eef0e reneeisnowhere 2024-10-09
spec_dataframe_200 %>% 
  ggplot(., aes(x=ENR_RATIO, fill = mrc))+
  geom_density(aes(alpha=0.4)) +
  theme_classic()+
  xlab("Enrichment ratio")+
  ggtitle("Enrichment ratio histogram MRC_200")+
  scale_fill_manual(values=mrc_palette)+
  coord_cartesian(xlim=c(1,5))

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
f9c15bd reneeisnowhere 2024-10-12
d8eef0e reneeisnowhere 2024-10-09
spec_dataframe_200 %>% 
  # dplyr::filter(mrc=="LR_open") %>% 
  ggplot(., aes(x=mrc, y=-log(base=10,EVALUE.x), color=mrc))+
    geom_jitter()+
  theme_classic()+
  ylab(expression("-log[10] Evalue"))+
  ggtitle("Significant values across MRC motifs_200")+
  scale_color_manual(values=mrc_palette)

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
aa0769e E. Renee Matthews 2025-01-02
5bf51a6 reneeisnowhere 2024-10-18
f9c15bd reneeisnowhere 2024-10-12
d8eef0e reneeisnowhere 2024-10-09
spec_dataframe_200 %>% 
  # dplyr::filter(mrc=="LR_open") %>% 
  ggplot(., aes(x=ENR_RATIO, y=-log(base=10,EVALUE.x), color=mrc))+
    geom_point(alpha=0.3)+
  theme_classic()+
  ylab(expression("-log[10] Evalue"))+
  ggtitle("Enrichment ratio against significance_200")+
  scale_color_manual(values=mrc_palette)

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
f9c15bd reneeisnowhere 2024-10-12
d8eef0e reneeisnowhere 2024-10-09

The enrichment ratio plot let me know where (sort of) to cut the plots to find the highest enrichment ratios by MRC. We decided that ER ratio is not correlated to the significance of the motif, so first filter will be slicing the top 20 by Evalue out, and the second plot will be what happens when we pull the top most significant representative from the cluster and show overall significance by cluster. (I evaluated the results of clustering by eye, to make sure the most significant (by evalue) of the cluster was called for the second figure) ### EAR bar plots

EAR open 200 bp barplots

ER_rat <- 1.25
mrc_type <- "EAR_open"
spec_dataframe_200 %>% 
  dplyr::filter(mrc==mrc_type) %>% 
  dplyr::filter(ENR_RATIO>ER_rat) %>%
  dplyr::select(RANK,CLUSTER, SITES,SIM_MOTIF,ALT_ID, ID,EVALUE.x, TP:'FP%', motif_name)%>%
  arrange(.,EVALUE.x) %>%
  mutate(log10Evalue= log(EVALUE.x, base = 10)*(-1)) %>% 
  mutate(motif_name=if_else(motif_name=="ELK3",paste(motif_name, RANK, sep="_"),             if_else(str_starts(motif_name,"^Z*"),paste(motif_name, RANK, sep="_"), if_else(motif_name=="Nrf1",paste(motif_name, RANK,sep="_"),motif_name))))%>%
  ggplot(., aes (y= reorder(motif_name,log10Evalue))) +
  geom_col(aes(x=log10Evalue),fill=mrc_palette[mrc_type]) +
  geom_point(aes(x=`TP%`*1.25), size =4)+
  scale_x_continuous(expand=c (0,.125),sec.axis = sec_axis(transform= ~./1.25,name="Percent of peaks with motif"))+
  theme_classic()+
  ylab("Enriched TF motif")+
  ggtitle(paste( mrc_type,"response peaks(200bp)Enrichment ratio:",ER_rat))

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
5bf51a6 reneeisnowhere 2024-10-18
d8eef0e reneeisnowhere 2024-10-09
spec_dataframe_200%>% 
  dplyr::filter(mrc==mrc_type) %>% 
  dplyr::filter(ENR_RATIO>ER_rat) %>%
  dplyr::select(RANK,CLUSTER, SITES,SIM_MOTIF,ALT_ID, ID,EVALUE.x, TP:'FP%', motif_name)%>%
  arrange(.,EVALUE.x) %>%
  mutate(log10Evalue= log(EVALUE.x, base = 10)*(-1)) %>% 
  mutate(motif_name=if_else(motif_name=="ELK3",paste(motif_name, RANK, sep="_"),             if_else(str_starts(motif_name,"^Z*"),paste(motif_name, RANK, sep="_"), if_else(motif_name=="Nrf1",paste(motif_name, RANK,sep="_"),motif_name))))%>%
  distinct(CLUSTER,.keep_all = TRUE) %>% 
  slice_head(n=5) %>% 
  ggplot(., aes (y= reorder(motif_name,log10Evalue))) +
  geom_col(aes(x=log10Evalue),fill=mrc_palette[mrc_type]) +
   geom_point(aes(x=`TP%`/1.5), size =4)+
   # geom_line(aes(x=`TP%`,y= motif_name, group=log10Evalue))+
  scale_x_continuous(expand=c (0,.25),sec.axis = sec_axis(transform= ~.*1.5,name="Percent of peaks with motif"))+
  # geom_text(aes())
  theme_classic()+
  ylab("Enriched TF motif")+
  ggtitle(paste( mrc_type,"response peaks(200bp)Enrichment ratio:",ER_rat," merged clusters"))

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
5bf51a6 reneeisnowhere 2024-10-18
d8eef0e reneeisnowhere 2024-10-09
EAR_close
EAR_close 200bp
ER_rat <- 1.25
mrc_type <- "EAR_close"
spec_dataframe_200 %>% 
  dplyr::filter(mrc==mrc_type) %>% 
  dplyr::filter(ENR_RATIO>ER_rat) %>% 
  dplyr::select(RANK,CLUSTER, SITES,SIM_MOTIF,ALT_ID, ID,EVALUE.x, TP:'FP%', motif_name)%>%
  arrange(.,EVALUE.x) %>%
  mutate(log10Evalue= log(EVALUE.x, base = 10)*(-1)) %>% 
  mutate(motif_name=if_else(motif_name=="MEIS1",paste(motif_name, RANK, sep="_"),             if_else(motif_name=="ZNF384",paste(motif_name, RANK, sep="_"), if_else(motif_name=="ZNF257",paste(motif_name, RANK,sep="_"),motif_name))))%>%
   slice_head(n=40) %>% 
  ggplot(., aes (y= reorder(motif_name,log10Evalue))) +
  geom_col(aes(x=log10Evalue),fill=mrc_palette[mrc_type]) +
  geom_point(aes(x=`TP%`*1), size =4)+
  scale_x_continuous(expand=c (0,.125),sec.axis = sec_axis(transform= ~./1,name="Percent of peaks with motif"))+
  theme_classic()+
  ylab("Enriched TF motif")+
  ggtitle(paste( mrc_type,"response peaks (200bp) Enrichment ratio:",ER_rat))

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
5bf51a6 reneeisnowhere 2024-10-18
d8eef0e reneeisnowhere 2024-10-09
spec_dataframe_200 %>% 
  dplyr::filter(mrc==mrc_type) %>% 
  dplyr::filter(ENR_RATIO>ER_rat) %>% 
  dplyr::select(RANK,CLUSTER, SITES,SIM_MOTIF,ALT_ID, ID,EVALUE.x, TP:'FP%', motif_name)%>%
  arrange(.,EVALUE.x) %>%
  mutate(log10Evalue= log(EVALUE.x, base = 10)*(-1)) %>% 
  mutate(motif_name=if_else(motif_name=="MEIS1",paste(motif_name, RANK, sep="_"),             if_else(motif_name=="ZNF384",paste(motif_name, RANK, sep="_"), if_else(motif_name=="ZNF257",paste(motif_name, RANK,sep="_"),motif_name))))%>%
  distinct(CLUSTER,.keep_all = TRUE) %>% 
   slice_head(n=5) %>% 
  ggplot(., aes (y= reorder(motif_name,log10Evalue))) +
  geom_col(aes(x=log10Evalue),fill=mrc_palette[mrc_type]) +
   geom_point(aes(x=`TP%`/1.25), size =4)+
   # geom_line(aes(x=`TP%`,y= motif_name, group=log10Evalue))+
  scale_x_continuous(expand=c (0,.25),sec.axis = sec_axis(transform= ~.*1.25,name="Percent of peaks with motif"))+
  # geom_text(aes())
  theme_classic()+
  ylab("Enriched TF motif")+
   ggtitle(paste( mrc_type,"response peaks (200bp) Enrichment ratio:",ER_rat," merged clusters"))

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
5bf51a6 reneeisnowhere 2024-10-18
d8eef0e reneeisnowhere 2024-10-09
spec_dataframe_200 %>% 
  dplyr::filter(mrc==mrc_type) %>% 
  # dplyr::filter(ENR_RATIO>ER_rat) %>% 
  dplyr::select(RANK,CLUSTER, SITES,SIM_MOTIF,ALT_ID, ID,EVALUE.x, TP:'FP%', motif_name)%>%
  # arrange(.,EVALUE.x) %>%
  mutate(log10Evalue= log(EVALUE.x, base = 10)*(-1)) %>% 
  # mutate(motif_name=if_else(motif_name=="MEIS1",paste(motif_name, RANK, sep="_"),             if_else(motif_name=="ZNF384",paste(motif_name, RANK, sep="_"), if_else(motif_name=="ZNF257",paste(motif_name, RANK,sep="_"),motif_name))))%>%
  distinct(CLUSTER,.keep_all = TRUE) %>% 
  arrange(.,EVALUE.x) %>%
   slice_head(n=5) %>% 
  ggplot(., aes (y= reorder(motif_name,log10Evalue))) +
  geom_col(aes(x=log10Evalue),fill=mrc_palette[mrc_type]) +
   geom_point(aes(x=`TP%`/1.25), size =4)+
   # geom_line(aes(x=`TP%`,y= motif_name, group=log10Evalue))+
  scale_x_continuous(expand=c (0,.25),sec.axis = sec_axis(transform= ~.*1.25,name="Percent of peaks with motif"))+
  # geom_text(aes())
  theme_classic()+
  ylab("Enriched TF motif")+
   ggtitle(paste( mrc_type,"response peaks (200bp) Enrichment ratio: not applied  modified merged clusters"))

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
5bf51a6 reneeisnowhere 2024-10-18
spec_dataframe_200 %>% 
  dplyr::filter(mrc==mrc_type) %>% 
  # dplyr::filter(ENR_RATIO>ER_rat) %>% 
  dplyr::select(RANK,CLUSTER, SITES,SIM_MOTIF,ALT_ID, ID,EVALUE.x, TP:'FP%', motif_name)%>%
  # arrange(.,EVALUE.x) %>%
  mutate(log10Evalue= log(EVALUE.x, base = 10)*(-1)) %>% 
  # mutate(motif_name=if_else(motif_name=="MEIS1",paste(motif_name, RANK, sep="_"),             if_else(motif_name=="ZNF384",paste(motif_name, RANK, sep="_"), if_else(motif_name=="ZNF257",paste(motif_name, RANK,sep="_"),motif_name))))%>%
  distinct(CLUSTER,.keep_all = TRUE) %>% 
  arrange(.,EVALUE.x) %>%
   slice_head(n=5)
# A tibble: 5 × 13
  RANK  CLUSTER SITES SIM_MOTIF ALT_ID ID       EVALUE.x    TP `TP%`    FP `FP%`
  <chr>   <dbl> <dbl> <chr>     <chr>  <chr>       <dbl> <dbl> <dbl> <dbl> <dbl>
1 1           2  1920 MA1988.1  Atf3   MA1988.1 4.97e-76  1920 49.6  26835 34.5 
2 345        58   822 MA1125.1  MEME-1 AAAAAAA… 5.20e-59   102  2.64  1371  1.76
3 348        61  1254 MA1596.1  MEME-2 GGGAGGV… 3   e-47  2915 75.4  57854 74.5 
4 29          9  3737 MA0676.1  Nr2e1  MA0676.1 4.35e-43  3737 96.6  70456 90.7 
5 33          4  3543 MA0790.1  POU4F1 MA0790.1 2.53e-40  3543 91.6  65240 84.0 
# ℹ 2 more variables: motif_name <chr>, log10Evalue <dbl>

ESR

ESR_open
ER_rat <- 1.25
mrc_type <- "ESR_open"
spec_dataframe_200 %>% 
  dplyr::filter(mrc=="ESR_open") %>% 
  dplyr::filter(ENR_RATIO>ER_rat) %>% 
  dplyr::select(RANK,CLUSTER, SITES,SIM_MOTIF,ALT_ID, ID,EVALUE.x, TP:'FP%', motif_name)%>%
  arrange(.,EVALUE.x) %>%
  mutate(log10Evalue= log(EVALUE.x, base = 10)*(-1)) %>% 
  mutate(motif_name=
           if_else(str_starts(motif_name,"JUND"),paste(motif_name, RANK, sep="_"),             if_else(str_starts(motif_name,"^ZN*"),paste(motif_name, RANK, sep="_"),    if_else(motif_name=="ZSCAN4", paste(motif_name, RANK,sep="_"),if_else(motif_name=="KLF9",paste(motif_name,RANK,sep="_"), motif_name)))))%>%
  slice_head(n=40) %>% 
  ggplot(., aes (y= reorder(motif_name,log10Evalue))) +
  geom_col(aes(x=log10Evalue),fill=mrc_palette["ESR_open"]) +
  geom_point(aes(x=`TP%`*2), size =4)+
  scale_x_continuous(expand=c (0,.125),sec.axis = sec_axis(transform= ~./2,name="Percent of peaks with motif"))+
  theme_classic()+
  ylab("Enriched TF motif")+
   ggtitle(paste( mrc_type,"response peaks 200 bpEnrichment ratio:",ER_rat))

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
5bf51a6 reneeisnowhere 2024-10-18
d8eef0e reneeisnowhere 2024-10-09
spec_dataframe_200 %>% 
  dplyr::filter(mrc=="ESR_open") %>% 
  dplyr::filter(ENR_RATIO>ER_rat) %>% 
  dplyr::select(RANK,CLUSTER, SITES,SIM_MOTIF,ALT_ID, ID,EVALUE.x, TP:'FP%', motif_name)%>%
  arrange(.,EVALUE.x) %>%
  mutate(log10Evalue= log(EVALUE.x, base = 10)*(-1)) %>% 
   mutate(motif_name=
           if_else(str_starts(motif_name,"JUND"),paste(motif_name, RANK, sep="_"),             if_else(str_starts(motif_name,"^ZN*"),paste(motif_name, RANK, sep="_"),    if_else(motif_name=="ZSCAN4", paste(motif_name, RANK,sep="_"),if_else(motif_name=="KLF9",paste(motif_name,RANK,sep="_"), motif_name)))))%>%
  distinct(CLUSTER,.keep_all = TRUE) %>% 
   slice_head(n=5) %>% 
  ggplot(., aes (y= reorder(motif_name,log10Evalue))) +
  geom_col(aes(x=log10Evalue),fill=mrc_palette["ESR_open"]) +
   geom_point(aes(x=`TP%`*4.7), size =4)+
   # geom_line(aes(x=`TP%`,y= motif_name, group=log10Evalue))+
  scale_x_continuous(expand=c (0,.25),sec.axis = sec_axis(transform= ~./4.7,name="Percent of peaks with motif"))+
  # geom_text(aes())
  theme_classic()+
  ylab("Enriched TF motif")+
  ggtitle(paste(mrc_type,"response peaks 200bp Enrichment ratio:",ER_rat," merged motif clusters"))

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
5bf51a6 reneeisnowhere 2024-10-18
d8eef0e reneeisnowhere 2024-10-09
spec_dataframe_200 %>% 
  dplyr::filter(mrc=="ESR_open") %>% 
  dplyr::filter(ENR_RATIO>ER_rat) %>% 
  dplyr::select(RANK,CLUSTER, SITES,SIM_MOTIF,ALT_ID, ID,EVALUE.x, TP:'FP%', motif_name)%>%
  arrange(.,EVALUE.x) %>%
  mutate(log10Evalue= log(EVALUE.x, base = 10)*(-1)) %>% 
   mutate(motif_name=
           if_else(str_starts(motif_name,"JUND"),paste(motif_name, RANK, sep="_"),             if_else(str_starts(motif_name,"^ZN*"),paste(motif_name, RANK, sep="_"),    if_else(motif_name=="ZSCAN4", paste(motif_name, RANK,sep="_"),if_else(motif_name=="KLF9",paste(motif_name,RANK,sep="_"), motif_name)))))%>%
  distinct(CLUSTER,.keep_all = TRUE) %>% 
   slice_head(n=5)
# A tibble: 5 × 13
  RANK  CLUSTER SITES SIM_MOTIF   ALT_ID ID     EVALUE.x    TP `TP%`    FP `FP%`
  <chr>   <dbl> <dbl> <chr>       <chr>  <chr>     <dbl> <dbl> <dbl> <dbl> <dbl>
1 16          3   800 MA0490.2    JUNB   MA04… 3   e-106   800 16.9   5381  6.93
2 3           1   682 GTGTGTGTGT… MEME-1 GTGT… 5   e-101   582 12.3   2893  3.72
3 44          2   808 MA1155.1    ZSCAN4 MA11… 1.75e- 63   808 17.0   6872  8.84
4 45          4   367 MA0861.1    TP73   MA08… 7.58e- 63   367  7.73  2046  2.63
5 50          5   188 MA0073.1    RREB1  MA00… 4.9 e- 39   188  3.96   894  1.15
# ℹ 2 more variables: motif_name <chr>, log10Evalue <dbl>
ESR_close
ER_rat <- 1.25
mrc_type <- "ESR_close"
spec_dataframe_200 %>% 
  dplyr::filter(mrc==mrc_type) %>% 
  dplyr::filter(ENR_RATIO>ER_rat) %>% 
  dplyr::select(RANK,CLUSTER, SITES,SIM_MOTIF,ALT_ID, ID,EVALUE.x, TP:'FP%', motif_name)%>%
  arrange(.,EVALUE.x) %>%
  mutate(log10Evalue= log(EVALUE.x, base = 10)*(-1)) %>% 
  mutate(motif_name=if_else(motif_name=="KLF9",paste(motif_name, RANK, sep="_"),             if_else(motif_name=="^ZN*",paste(motif_name, RANK, sep="_"), if_else(motif_name=="ZSCAN4",paste(motif_name, RANK,sep="_"),motif_name))))%>%
  slice_head(n=40) %>% 
  ggplot(., aes (y= reorder(motif_name,log10Evalue))) +
  geom_col(aes(x=log10Evalue),fill=mrc_palette[mrc_type]) +
  geom_point(aes(x=`TP%`*1.25), size =4)+
  scale_x_continuous(expand=c (0,.125),sec.axis = sec_axis(transform= ~./1.25,name="Percent of peaks with motif"))+
  theme_classic()+
  ylab("Enriched TF motif")+
 ggtitle(paste( mrc_type,"response peaks 200bp Enrichment ratio:",ER_rat))

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
5bf51a6 reneeisnowhere 2024-10-18
d8eef0e reneeisnowhere 2024-10-09
spec_dataframe_200 %>% 
  dplyr::filter(mrc==mrc_type) %>% 
  dplyr::filter(ENR_RATIO>(ER_rat+.1)) %>% 
  dplyr::select(RANK,CLUSTER, SITES,SIM_MOTIF,ALT_ID, ID,EVALUE.x, TP:'FP%', motif_name)%>%
  arrange(.,EVALUE.x) %>%
  mutate(log10Evalue= log(EVALUE.x, base = 10)*(-1)) %>% 
  mutate(motif_name=if_else(motif_name=="KLF9",paste(motif_name, RANK, sep="_"),             if_else(motif_name=="^ZN*",paste(motif_name, RANK, sep="_"), if_else(motif_name=="ZSCAN4",paste(motif_name, RANK,sep="_"),motif_name))))%>%
  distinct(CLUSTER,.keep_all = TRUE) %>% 
  slice_head(n=5) %>% 
  ggplot(., aes (y= reorder(motif_name,log10Evalue))) +
  geom_col(aes(x=log10Evalue),fill=mrc_palette[mrc_type]) +
   geom_point(aes(x=`TP%`/0.5), size =4)+
   # geom_line(aes(x=`TP%`,y= motif_name, group=log10Evalue))+
  scale_x_continuous(expand=c (0,.25),sec.axis = sec_axis(transform= ~.*0.5,name="Percent of peaks with motif"))+
  # geom_text(aes())
  theme_classic()+
  ylab("Enriched TF motif")+
  ggtitle(paste( mrc_type,"response peaks 200bp Enrichment ratio:",ER_rat+.1," merged motif clusters"))

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
5bf51a6 reneeisnowhere 2024-10-18
d8eef0e reneeisnowhere 2024-10-09
ESR_opcl {C}
ER_rat <- 1.25
mrc_type <- "ESR_opcl"
spec_dataframe_200 %>% 
  dplyr::filter(mrc==mrc_type) %>% 
  dplyr::filter(ENR_RATIO>ER_rat) %>% 
  dplyr::select(RANK,CLUSTER, SITES,SIM_MOTIF,ALT_ID, ID,EVALUE.x, TP:'FP%', motif_name)%>%
  arrange(.,EVALUE.x) %>%
  mutate(log10Evalue= log(EVALUE.x, base = 10)*(-1)) %>% 
  mutate(motif_name=if_else(motif_name=="KLF9",paste(motif_name, RANK, sep="_"),             if_else(motif_name=="^ZN*",paste(motif_name, RANK, sep="_"), if_else(motif_name=="ZSCAN4",paste(motif_name, RANK,sep="_"),motif_name))))%>%
  slice_head(n=40) %>% 
  ggplot(., aes (y= reorder(motif_name,log10Evalue))) +
  geom_col(aes(x=log10Evalue),fill=mrc_palette[mrc_type]) +
  geom_point(aes(x=`TP%`*1.25), size =4)+
  scale_x_continuous(expand=c (0,.125),sec.axis = sec_axis(transform= ~./1.25,name="Percent of peaks with motif"))+
  theme_classic()+
  ylab("Enriched TF motif")+
 ggtitle(paste( mrc_type,"response peaks 200bp Enrichment ratio:",ER_rat))

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
5bf51a6 reneeisnowhere 2024-10-18
d8eef0e reneeisnowhere 2024-10-09
spec_dataframe_200 %>% 
  dplyr::filter(mrc==mrc_type) %>% 
  dplyr::filter(ENR_RATIO>(ER_rat)) %>% 
  dplyr::select(RANK,CLUSTER, SITES,SIM_MOTIF,ALT_ID, ID,EVALUE.x, TP:'FP%', motif_name)%>%
  arrange(.,EVALUE.x) %>%
  mutate(log10Evalue= log(EVALUE.x, base = 10)*(-1)) %>% 
  mutate(motif_name=if_else(motif_name=="KLF9",paste(motif_name, RANK, sep="_"),             if_else(motif_name=="^ZN*",paste(motif_name, RANK, sep="_"), if_else(motif_name=="ZSCAN4",paste(motif_name, RANK,sep="_"),motif_name))))%>%
  distinct(CLUSTER,.keep_all = TRUE) %>% 
  slice_head(n=5) %>% 
  ggplot(., aes (y= reorder(motif_name,log10Evalue))) +
  geom_col(aes(x=log10Evalue),fill=mrc_palette[mrc_type]) +
   geom_point(aes(x=`TP%`/3), size =4)+
   # geom_line(aes(x=`TP%`,y= motif_name, group=log10Evalue))+
  scale_x_continuous(expand=c (0,.25),sec.axis = sec_axis(transform= ~.*3,name="Percent of peaks with motif"))+
  # geom_text(aes())
  theme_classic()+
  ylab("Enriched TF motif")+
  ggtitle(paste( mrc_type,"response peaks 200bp Enrichment ratio:",ER_rat," merged motif clusters"))

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
5bf51a6 reneeisnowhere 2024-10-18
f9c15bd reneeisnowhere 2024-10-12
d8eef0e reneeisnowhere 2024-10-09
ESR_clop {D}
ER_rat <- 1.25
mrc_type <- "ESR_clop"
spec_dataframe_200 %>% 
  dplyr::filter(mrc==mrc_type) %>% 
  dplyr::filter(ENR_RATIO>ER_rat) %>% 
  dplyr::select(RANK,CLUSTER, SITES,SIM_MOTIF,ALT_ID, ID,EVALUE.x, TP:'FP%', motif_name)%>%
  arrange(.,EVALUE.x) %>%
  mutate(log10Evalue= log(EVALUE.x, base = 10)*(-1)) %>% 
  mutate(motif_name=if_else(motif_name=="KLF9",paste(motif_name, RANK, sep="_"),             if_else(motif_name=="^ZN*",paste(motif_name, RANK, sep="_"), if_else(motif_name=="ZSCAN4",paste(motif_name, RANK,sep="_"),motif_name))))%>%
  slice_head(n=40) %>% 
  ggplot(., aes (y= reorder(motif_name,log10Evalue))) +
  geom_col(aes(x=log10Evalue),fill=mrc_palette[mrc_type]) +
  geom_point(aes(x=`TP%`*1.25), size =4)+
  scale_x_continuous(expand=c (0,.125),sec.axis = sec_axis(transform= ~./1.25,name="Percent of peaks with motif"))+
  theme_classic()+
  ylab("Enriched TF motif")+
 ggtitle(paste( mrc_type,"response peaks 200bp Enrichment ratio:",ER_rat))

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
5bf51a6 reneeisnowhere 2024-10-18
f9c15bd reneeisnowhere 2024-10-12
spec_dataframe_200 %>% 
  dplyr::filter(mrc==mrc_type) %>% 
  dplyr::filter(ENR_RATIO>(ER_rat)) %>% 
  dplyr::select(RANK,CLUSTER, SITES,SIM_MOTIF,ALT_ID, ID,EVALUE.x, TP:'FP%', motif_name)%>%
  arrange(.,EVALUE.x) %>%
  mutate(log10Evalue= log(EVALUE.x, base = 10)*(-1)) %>% 
  mutate(motif_name=if_else(motif_name=="KLF9",paste(motif_name, RANK, sep="_"),             if_else(motif_name=="^ZN*",paste(motif_name, RANK, sep="_"), if_else(motif_name=="ZSCAN4",paste(motif_name, RANK,sep="_"),motif_name))))%>%
  distinct(CLUSTER,.keep_all = TRUE) %>% 
  slice_head(n=5) %>% 
  ggplot(., aes (y= reorder(motif_name,log10Evalue))) +
  geom_col(aes(x=log10Evalue),fill=mrc_palette[mrc_type]) +
   geom_point(aes(x=`TP%`*2.3), size =4)+
   # geom_line(aes(x=`TP%`,y= motif_name, group=log10Evalue))+
  scale_x_continuous(expand=c (0,.25),sec.axis = sec_axis(transform= ~./2.3,name="Percent of peaks with motif"))+
  # geom_text(aes())
  theme_classic()+
  ylab("Enriched TF motif")+
  ggtitle(paste( mrc_type,"response peaks 200bp Enrichment ratio:",ER_rat," merged motif clusters"))

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
5bf51a6 reneeisnowhere 2024-10-18
f9c15bd reneeisnowhere 2024-10-12

LR

LR_open
ER_rat <- 1.25
mrc_type <- "LR_open"
spec_dataframe_200 %>% 
  dplyr::filter(mrc==mrc_type) %>% 
  dplyr::filter(ENR_RATIO>ER_rat) %>% 
  dplyr::select(RANK,CLUSTER, SITES,SIM_MOTIF,ALT_ID, ID,EVALUE.x, TP:'FP%', motif_name)%>%
  arrange(.,EVALUE.x) %>%
  mutate(log10Evalue= log(EVALUE.x, base = 10)*(-1)) %>% 
 mutate(motif_name=
           if_else(str_starts(motif_name,"BATF"),paste(motif_name, RANK, sep="_"),             if_else(str_starts(motif_name,"^FO*"),paste(motif_name, RANK, sep="_"),    if_else(motif_name=="ZSCAN4", paste(motif_name, RANK,sep="_"),if_else(motif_name=="KLF9",paste(motif_name,RANK,sep="_"), motif_name)))))%>%
  slice_head(n=60) %>% 
  ggplot(., aes (y= reorder(motif_name,log10Evalue))) +
  geom_col(aes(x=log10Evalue),fill=mrc_palette[mrc_type]) +
  geom_point(aes(x=`TP%`*4), size =4)+
  scale_x_continuous(expand=c (0,.125),sec.axis = sec_axis(transform= ~./4,name="Percent of peaks with motif"))+
  theme_classic()+
  ylab("Enriched TF motif")+
 ggtitle(paste( mrc_type,"response peaks 200 bp Enrichment ratio:",ER_rat))

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
5bf51a6 reneeisnowhere 2024-10-18
d8eef0e reneeisnowhere 2024-10-09
spec_dataframe_200 %>% 
  dplyr::filter(mrc==mrc_type) %>% 
  dplyr::filter(ENR_RATIO>ER_rat) %>% 
  dplyr::select(RANK,CLUSTER, SITES,SIM_MOTIF,ALT_ID, ID,EVALUE.x, TP:'FP%', motif_name)%>%
  arrange(.,EVALUE.x) %>%
  mutate(log10Evalue= log(EVALUE.x, base = 10)*(-1)) %>% 
  mutate(motif_name=
           if_else(str_starts(motif_name,"BATF"),paste(motif_name, RANK, sep="_"),             if_else(str_starts(motif_name,"^FO*"),paste(motif_name, RANK, sep="_"),    if_else(motif_name=="ZSCAN4", paste(motif_name, RANK,sep="_"),if_else(motif_name=="KLF9",paste(motif_name,RANK,sep="_"), motif_name)))))%>%
  distinct(CLUSTER,.keep_all = TRUE) %>% 
   slice_head(n=5) %>% 
  ggplot(., aes (y= reorder(motif_name,log10Evalue))) +
  geom_col(aes(x=log10Evalue),fill=mrc_palette[mrc_type]) +
   geom_point(aes(x=`TP%`*5), size =4)+
   # geom_line(aes(x=`TP%`,y= motif_name, group=log10Evalue))+
  scale_x_continuous(expand=c (0,.25),sec.axis = sec_axis(transform= ~./5,name="Percent of peaks with motif"))+
  # geom_text(aes())
  theme_classic()+
  ylab("Enriched TF motif")+
  ggtitle(paste( mrc_type,"response peaks 200 bp Enrichment ratio:",ER_rat," merged motif clusters"))

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
5bf51a6 reneeisnowhere 2024-10-18
d8eef0e reneeisnowhere 2024-10-09
LR_close
ER_rat <- 1.25
mrc_type <- "LR_close"
spec_dataframe_200 %>% 
  dplyr::filter(mrc==mrc_type) %>% 
  dplyr::filter(ENR_RATIO>ER_rat) %>% 
  dplyr::select(RANK,CLUSTER, SITES,SIM_MOTIF,ALT_ID, ID,EVALUE.x, TP:'FP%', motif_name)%>%
  arrange(.,EVALUE.x) %>%
  mutate(log10Evalue= log(EVALUE.x, base = 10)*(-1)) %>% 
  mutate(motif_name=if_else(motif_name=="KLF9",paste(motif_name, RANK, sep="_"),             if_else(str_starts(motif_name,"^R*"),paste(motif_name, RANK, sep="_"), if_else(motif_name=="PKNOX2",paste(motif_name, RANK,sep="_"),motif_name))))%>%
    slice_head(n=40) %>% 
  ggplot(., aes (y= reorder(motif_name,log10Evalue))) +
  geom_col(aes(x=log10Evalue),fill=mrc_palette[mrc_type]) +
  geom_point(aes(x=`TP%`*1.25), size =4)+
  scale_x_continuous(expand=c (0,.125),sec.axis = sec_axis(transform= ~./1.25,name="Percent of peaks with motif"))+
  theme_classic()+
  ylab("Enriched TF motif")+
 ggtitle(paste( mrc_type,"response peaks 200bp Enrichment ratio:",ER_rat))

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
5bf51a6 reneeisnowhere 2024-10-18
d8eef0e reneeisnowhere 2024-10-09
spec_dataframe_200 %>% 
  dplyr::filter(mrc==mrc_type) %>% 
  dplyr::filter(ENR_RATIO>ER_rat) %>% 
  dplyr::select(RANK,CLUSTER, SITES,SIM_MOTIF,ALT_ID, ID,EVALUE.x, TP:'FP%', motif_name)%>%
  arrange(.,EVALUE.x) %>%
  mutate(log10Evalue= log(EVALUE.x, base = 10)*(-1)) %>% 
  mutate(motif_name=if_else(motif_name=="KLF9",paste(motif_name, RANK, sep="_"),             if_else(str_starts(motif_name,"^R*"),paste(motif_name, RANK, sep="_"), if_else(motif_name=="PKNOX2",paste(motif_name, RANK,sep="_"),motif_name))))%>%
  distinct(CLUSTER,.keep_all = TRUE) %>% 
  slice_head(n=5) %>% 
  ggplot(., aes (y= reorder(motif_name,log10Evalue))) +
  geom_col(aes(x=log10Evalue),fill=mrc_palette[mrc_type]) +
   geom_point(aes(x=`TP%`/.4), size =4)+
   # geom_line(aes(x=`TP%`,y= motif_name, group=log10Evalue))+
  scale_x_continuous(expand=c (0,.25),sec.axis = sec_axis(transform= ~.*.4,name="Percent of peaks with motif"))+
  # geom_text(aes())
  theme_classic()+
  ylab("Enriched TF motif")+
  ggtitle(paste( mrc_type,"response peaks 200bp Enrichment ratio:",ER_rat," merged motif clusters"))

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
5bf51a6 reneeisnowhere 2024-10-18
d8eef0e reneeisnowhere 2024-10-09
# spec_dataframe %>% 
#   dplyr::filter(mrc==mrc_type) %>% 
#   dplyr::filter(ENR_RATIO>ER_rat) #%>% 
#   dplyr::select(RANK,CLUSTER, SITES,SIM_MOTIF,ALT_ID, ID,EVALUE, TP:'FP%', motif_name)

motif and peak section

NR_gr <- import("data/Final_four_data/meme_bed/NR_df.bed")
EAR_open_gr <- import("data/Final_four_data/meme_bed/EAR_open.bed")
EAR_close_gr <- import("data/Final_four_data/meme_bed/EAR_close.bed")
ESR_open_gr <- import("data/Final_four_data/meme_bed/ESR_open.bed")
ESR_OC_gr <- import("data/Final_four_data/meme_bed/ESR_OC.bed")
ESR_close_gr <- import("data/Final_four_data/meme_bed/ESR_close.bed")
LR_open_gr <- import("data/Final_four_data/meme_bed/LR_open.bed")
LR_close_gr <- import("data/Final_four_data/meme_bed/LR_close.bed")
ESR_C_gr <- import("data/Final_four_data/meme_bed/ESR_C.bed")
 
ESR_D_gr <- import("data/Final_four_data/meme_bed/ESR_D.bed")
 
# rtracklayer::export.bed(ESR_D_resized,con = "data/Final_four_data/meme_bed/ESR_D_resized.bed")
ESR_C_resized <- resize(ESR_C_gr, width = 400,fix='center')
ESR_D_resized <- resize(ESR_D_gr, width = 400,fix='center')
EAR_open_resized <- resize(EAR_open_gr, width = 400,fix='center')
ESR_open_resized <- resize(ESR_open_gr, width = 400,fix='center')
LR_open_resized <- resize(LR_open_gr, width = 400,fix='center')
NR_resized <- resize(NR_gr, width = 400,fix='center')

EAR_close_resized <- resize(EAR_close_gr, width = 400,fix='center')
ESR_close_resized <- resize(ESR_close_gr, width = 400,fix='center')
LR_close_resized <- resize(LR_close_gr, width = 400,fix='center')
ESR_OC_resized <- resize(ESR_OC_gr, width = 400,fix='center')



# BiocManager::install('PWMEnrich')

# seq_list_cd <- list(EAR_open_resized=EAR_open_resized,EAR_close_resized=EAR_close_resized,ESR_open_resized=ESR_open_resized,ESR_close_resized=ESR_close_resized,ESR_C_resized=ESR_C_resized,ESR_D_resized=ESR_D_resized,LR_open_resized=LR_open_resized,LR_close_resized=LR_close_resized,NR_resized=NR_resized)



# seq_all_cd_200 <- lapply(seq_list_cd, getSeq, x=BSgenome.Hsapiens.UCSC.hg38)
# seq_all_200

# saveRDS(seq_all_cd_200, "data/Final_four_data/sequencing_cd_200_object8_motif.RDS")
# seq_all_200 <- readRDS("data/Final_four_data/sequencing_R200_object8_motif.RDS")
seq_all_cd_200 <- readRDS("data/Final_four_data/sequencing_cd_200_object8_motif.RDS")

# spec_dataframe_200 %>% 
#   # dplyr::filter(stringr::str_detect( motif_name,"Mafg^*")) %>%
#   dplyr::filter(mrc=="EAR_close") %>% 
#   dplyr::select(RANK,CLUSTER,ENR_RATIO,SIM_MOTIF,ALT_ID, ID,EVALUE.x, TP:'FP%', motif_name)%>%
#   dplyr::filter(CLUSTER==58|CLUSTER==58) %>%
#   arrange(.,EVALUE.x)# %>%
spec_dataframe_200 <- readRDS("data/Final_four_data/spec_dataframe_200.RDS")

spec_dataframe_200 %>% 
  dplyr::select(CLUSTER, ID:CONSENSUS,motif_name, mrc,NAME,ENR_RATIO,EVALUE.x) %>% 
  dplyr::filter(ENR_RATIO>1.2) %>% 
 dplyr::filter(EVALUE.x<0.05)%>% 
  group_by(mrc,CLUSTER) %>% 
  summarize(ID=paste(unique(ID), collapse = ";"),
            ALT_ID=paste(unique(ALT_ID), collapse = ";"),
            motif_name=paste(unique(motif_name),collapse="; "),
            NAME=paste((NAME),collapse =";"),
            mrc=unique(mrc),
            sig_val=paste0(min(EVALUE.x),"-",max(EVALUE.x)),
            order_val=min(EVALUE.x)) %>% 
    arrange(mrc,order_val) #%>% 
# A tibble: 163 × 8
# Groups:   mrc [8]
   mrc       CLUSTER ID                ALT_ID motif_name NAME  sig_val order_val
   <chr>       <dbl> <chr>             <chr>  <chr>      <chr> <chr>       <dbl>
 1 EAR_close       2 MA1988.1;MA0099.… Atf3;… Atf3; FOS… NA;N… 4.97e-…  4.97e-76
 2 EAR_close      58 AAAAAAAAAAAAAAW   MEME-1 ZNF384     (ZNF… 5.2e-5…  5.20e-59
 3 EAR_close       1 MA0766.2;MA0482.2 GATA5… GATA5; GA… NA;NA 9.06e-…  9.06e-50
 4 EAR_close      17 MA0842.2          NRL    NRL        NA    5.88e-…  5.88e-22
 5 EAR_close      54 TGTYGCCCAGGCTGG   MEME-3 ZKSCAN3    (ZKS… 2.8e-2…  2.8 e-21
 6 EAR_close      59 WGCTGGGATTACAGG   MEME-4 PITX1      (PIT… 4.2e-1…  4.20e-19
 7 EAR_close      29 MA0492.1;MA0488.1 JUND;… JUND; JUN  NA;NA 4.53e-…  4.53e-15
 8 EAR_close      37 MA0029.1          Mecom  Mecom      NA    1.06e-…  1.06e-10
 9 EAR_close      51 MA1110.2          Nr1H4  Nr1H4      NA    2.4e-1…  2.40e-10
10 EAR_close      47 MA1643.1;MA0119.… NFIB;… NFIB; NFI… NA;N… 7.56e-…  7.56e- 8
# ℹ 153 more rows
  # write_delim(.,"data/Final_four_data/motif_cluster_dataframe.txt",delim="\t")
meme_motifs_EAR_open <- read_meme("C:/Users/renee/ATAC_folder/ATAC_meme_data/200bp/EAR_open_200xstreme/xstreme.txt")
meme_motifs_ESR_open <- read_meme("C:/Users/renee/ATAC_folder/ATAC_meme_data/200bp/ESR_open_200xstreme/xstreme.txt")
meme_motifs_LR_open <- read_meme("C:/Users/renee/ATAC_folder/ATAC_meme_data/200bp/LR_open_200xstreme/xstreme.txt")
meme_motifs_EAR_close <- read_meme("C:/Users/renee/ATAC_folder/ATAC_meme_data/200bp/EAR_close_200xstreme/xstreme.txt")
meme_motifs_ESR_close <- read_meme("C:/Users/renee/ATAC_folder/ATAC_meme_data/200bp/ESR_close_200xstreme/xstreme.txt")
meme_motifs_LR_close <- read_meme("C:/Users/renee/ATAC_folder/ATAC_meme_data/200bp/LR_close_200xstreme/xstreme.txt")
meme_motifs_ESR_opcl <- read_meme("C:/Users/renee/ATAC_folder/ATAC_meme_data/200bp/ESR_C_200xstreme/xstreme.txt")
meme_motifs_ESR_clop <- read_meme("C:/Users/renee/ATAC_folder/ATAC_meme_data/200bp/ESR_D_200xstreme/xstreme.txt")


holder_EAR_open <- meme_motifs_EAR_open[[4]]
holder_ESR_open <- meme_motifs_ESR_open[[3]]
holder_LR_open <- meme_motifs_LR_open[[1]]
holder_ESR_opcl <- meme_motifs_ESR_opcl[[2]]
holder_EAR_close <- meme_motifs_EAR_close[[2]]
holder_ESR_close <- meme_motifs_ESR_close[[18]]
holder_LR_close <- meme_motifs_LR_close[[1]]
holder_ESR_clop <- meme_motifs_ESR_clop[[1]]

EAR open top motif

# pw_matrix_earo <- convert_motifs(holder_EAR_open, class = "TFBSTools-PWMatrix")
# 
# motif_EAR_open_4_results <- lapply(seq_all_cd_200, function(sequences) {
# matchMotifs(pw_matrix_earo, sequences, out = "positions")
# })
# 
# motifstorage_earo <-motif_positions_df <- do.call(rbind, lapply(seq_along(motif_EAR_open_4_results), function(i) {
  # positions <- motif_EAR_open_4_results[[i]]  # Positions from matchMotifs
  # seq_name <- names(seq_all_cd_200)[i]  # Get sequence ID from the original list
  # 
  # if (length(positions) > 0) {
  #   # Create a data frame with sequence_id and motif positions
  #   data.frame(
  #     sequence_id = seq_name,  # Use the sequence name here
  #     motif_position = unlist(positions)
  #   )
  # } else {
  #   NULL  # If no positions, return NULL
#   }
# }))

 # saveRDS(motifstorage_earo, "data/Final_four_data/matchr_EAR_open_4.RDS")
##### PLOTING CODE BELOW THIS LINE FOR EAR_OPEN  #####
 # motifstorage_earo <- readRDS("data/Final_four_data/matchr_EAR_open_6.RDS")
motifstorage_earo <- readRDS("data/Final_four_data/matchr_EAR_open_4.RDS")
motifstorage_earo %>% 
mutate(sequence_id= gsub("_resized","",sequence_id)) %>% 
  # dplyr::filter(id =="EAR_open"|id == "NR") %>%
   # dplyr::filter(relScore>.90) %>%
  mutate(position=motif_position.start-200) %>% 
  ggplot(.,aes(position, color = sequence_id))+
  geom_density(trim = FALSE,size=1.5) +
  theme_bw() +
  scale_color_manual(values=mrc_palette)+
  ggtitle("ZBTB14")

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
b5b2c0f reneeisnowhere 2024-10-18
5bf51a6 reneeisnowhere 2024-10-18
EAR_open_density_plot <- motifstorage_earo %>% 
  mutate(sequence_id= gsub("_resized","",sequence_id)) %>% 
  dplyr::filter(sequence_id == "EAR_open" | sequence_id == "NR") %>%
   mutate(position=motif_position.start-200) %>% 
  ggplot(., aes(position, color = sequence_id)) +
  geom_density(trim = FALSE, size = 1.5) +
  theme_bw() +
  scale_color_manual(values = mrc_palette) +
  ggtitle("ZBTB14")

# Assuming you already have the motif in a matrix or data frame for ggseqlogo

EAR_open_matrix_eg <- holder_EAR_open@motif  # If your motif is in PWM format

# Create the motif logo plot, this adds bits instead of "p" which is probability.
EAR_open_motif_logo_plot <- ggseqlogo(EAR_open_matrix_eg, method = "bits") + 
  theme_classic() +  
  ggtitle("EAR_open Motif Logo")
  
# Combine the density plot and motif logo plot using cowplot
  EAR_open_toprow <- plot_grid(NULL,EAR_open_motif_logo_plot, NULL, ncol = 3, rel_widths = c(.2,1,.2))
EAR_open_combined_plot <- plot_grid(EAR_open_toprow,EAR_open_density_plot,nrow=2, rel_heights = c(0.7,2))

# Print the combined plot
print(EAR_open_combined_plot)

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
b5b2c0f reneeisnowhere 2024-10-18
5bf51a6 reneeisnowhere 2024-10-18

ESR open top motif

# pw_matrix_ESRo <- convert_motifs(holder_ESR_open, class = "TFBSTools-PWMatrix")
# 
# motif_ESR_open_6_results <- lapply(seq_all_cd_200, function(sequences) {
# matchMotifs(pw_matrix_ESRo, sequences, out = "positions")
# })
# 
# motifstorage_ESRo <-motif_positions_df <- do.call(rbind, lapply(seq_along(motif_ESR_open_6_results), function(i) {
#   positions <- motif_ESR_open_6_results[[i]]  # Positions from matchMotifs
#   seq_name <- names(seq_all_cd_200)[i]  # Get sequence ID from the original list
# # 
#   if (length(positions) > 0) {
#     # Create a data frame with sequence_id and motif positions
#     data.frame(
#       sequence_id = seq_name,  # Use the sequence name here
#       motif_position = unlist(positions)
#     )
#   } else {
#     NULL  # If no positions, return NULL
#   }
# }))
# #   
#  saveRDS(motifstorage_ESRo, "data/Final_four_data/matchr_ESR_open_3.RDS")
#### PLOTING CODE BELOW THIS LINE FOR ESR_OPEN  #####
motifstorage_ESRo <- readRDS("data/Final_four_data/matchr_ESR_open_3.RDS")
motifstorage_ESRo %>% 
mutate(sequence_id= gsub("_resized","",sequence_id)) %>% 
  # dplyr::filter(id =="ESR_open"|id == "NR") %>%
   # dplyr::filter(relScore>.90) %>%
  mutate(position=motif_position.start-200) %>% 
  ggplot(.,aes(position, color = sequence_id))+
  geom_density(trim = FALSE,size=1.5) +
  theme_bw() +
  scale_color_manual(values=mrc_palette)+
  ggtitle("motifish")

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
5bf51a6 reneeisnowhere 2024-10-18
ESR_open_density_plot <- motifstorage_ESRo %>% 
  mutate(sequence_id= gsub("_resized","",sequence_id)) %>% 
  dplyr::filter(sequence_id == "ESR_open" | sequence_id == "NR") %>%
   mutate(position=motif_position.start-200) %>% 
  ggplot(., aes(position, color = sequence_id)) +
  geom_density(trim = FALSE, size = 1.5) +
  theme_bw() +
  scale_color_manual(values = mrc_palette) +
  ggtitle("JUNB")

# Assuming you already have the motif in a matrix or data frame for ggseqlogo

ESR_open_matrix_eg <- holder_ESR_open@motif  # If your motif is in PWM format

# Create the motif logo plot, this adds bits instead of "p" which is probability.
ESR_open_motif_logo_plot <- ggseqlogo(ESR_open_matrix_eg, method = "bits") + 
  theme_classic() +  
  ggtitle("ESR_open Motif Logo")
  
# Combine the density plot and motif logo plot using cowplot
  ESR_open_toprow <- plot_grid(NULL,ESR_open_motif_logo_plot, NULL, ncol = 3, rel_widths = c(.2,1,.2))
ESR_open_combined_plot <- plot_grid(ESR_open_toprow,ESR_open_density_plot,nrow=2, rel_heights = c(0.7,2))

# Print the combined plot
print(ESR_open_combined_plot)

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
5bf51a6 reneeisnowhere 2024-10-18

LR open top motif

# pw_matrix_LRo <- convert_motifs(holder_LR_open, class = "TFBSTools-PWMatrix")
# 
# motif_LR_open_1_results <- lapply(seq_all_cd_200, function(sequences) {
# matchMotifs(pw_matrix_LRo, sequences, out = "positions")
# })
# 
# motifstorage_LRo <-motif_positions_df <- do.call(rbind, lapply(seq_along(motif_LR_open_1_results), function(i) {
#   positions <- motif_LR_open_1_results[[i]]  # Positions from matchMotifs
#   seq_name <- names(seq_all_cd_200)[i]  # Get sequence ID from the original list
# # 
#   if (length(positions) > 0) {
#     # Create a data frame with sequence_id and motif positions
#     data.frame(
#       sequence_id = seq_name,  # Use the sequence name here
#       motif_position = unlist(positions)
#     )
#   } else {
#     NULL  # If no positions, return NULL
#   }
# }))
# #   
 # saveRDS(motifstorage_LRo, "data/Final_four_data/matchr_LR_open_1.RDS")
#### PLOTING CODE BELOW THIS LINE FOR LR_OPEN  #####
motifstorage_LRo <- readRDS("data/Final_four_data/matchr_LR_open_1.RDS")
motifstorage_LRo %>% 
mutate(sequence_id= gsub("_resized","",sequence_id)) %>% 
  # dplyr::filter(id =="LR_open"|id == "NR") %>%
   # dplyr::filter(relScore>.90) %>%
  mutate(position=motif_position.start-200) %>% 
  ggplot(.,aes(position, color = sequence_id))+
  geom_density(trim = FALSE,size=1.5) +
  theme_bw() +
  scale_color_manual(values=mrc_palette)+
  ggtitle("Mafg")

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
5bf51a6 reneeisnowhere 2024-10-18
LR_open_density_plot <- motifstorage_LRo %>% 
  mutate(sequence_id= gsub("_resized","",sequence_id)) %>% 
  dplyr::filter(sequence_id == "LR_open" | sequence_id == "NR") %>%
   mutate(position=motif_position.start-200) %>% 
  ggplot(., aes(position, color = sequence_id)) +
  geom_density(trim = FALSE, size = 1.5) +
  theme_bw() +
  scale_color_manual(values = mrc_palette) +
  ggtitle("Mafg")

# Assuming you already have the motif in a matrix or data frame for ggseqlogo

LR_open_matrix_eg <- holder_LR_open@motif  # If your motif is in PWM format

# Create the motif logo plot, this adds bits instead of "p" which is probability.
LR_open_motif_logo_plot <- ggseqlogo(LR_open_matrix_eg, method = "bits") + 
  theme_classic() +  
  ggtitle("LR_open Motif Logo")
  
# Combine the density plot and motif logo plot using cowplot
  LR_open_toprow <- plot_grid(NULL,LR_open_motif_logo_plot, NULL, ncol = 3, rel_widths = c(.2,1,.2))
LR_open_combined_plot <- plot_grid(LR_open_toprow,LR_open_density_plot,nrow=2, rel_heights = c(0.7,2))

# Print the combined plot
print(LR_open_combined_plot)

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
5bf51a6 reneeisnowhere 2024-10-18

EAR_close top motif

# pw_matrix_EARc <- convert_motifs(holder_EAR_close, class = "TFBSTools-PWMatrix")
# 
# motif_EAR_close_1_results <- lapply(seq_all_cd_200, function(sequences) {
# matchMotifs(pw_matrix_EARc, sequences, out = "positions")
# })

# motifstorage_EARc <-motif_positions_df <- do.call(rbind, lapply(seq_along(motif_EAR_close_1_results), function(i) {
#   positions <- motif_EAR_close_1_results[[i]]  # Positions from matchMotifs
#   seq_name <- names(seq_all_cd_200)[i]  # Get sequence ID from the original list
#
#   if (length(positions) > 0) {
#     # Create a data frame with sequence_id and motif positions
#     data.frame(
#       sequence_id = seq_name,  # Use the sequence name here
#       motif_position = unlist(positions)
#     )
#   } else {
#     NULL  # If no positions, return NULL
#   }
# }))
# #   
 # saveRDS(motifstorage_EARc, "data/Final_four_data/matchr_EAR_close_2.RDS")
#### PLOTING CODE BELOW THIS LINE FOR EAR_close  #####
motifstorage_EARc <- readRDS("data/Final_four_data/matchr_EAR_close_2.RDS")
motifstorage_EARc %>% 
mutate(sequence_id= gsub("_resized","",sequence_id)) %>% 
  # dplyr::filter(id =="EAR_close"|id == "NR") %>%
   # dplyr::filter(relScore>.90) %>%
  mutate(position=motif_position.start-200) %>% 
  ggplot(.,aes(position, color = sequence_id))+
  geom_density(trim = FALSE,size=1.5) +
  theme_bw() +
  scale_color_manual(values=mrc_palette)+
  ggtitle("Atf3")

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
5bf51a6 reneeisnowhere 2024-10-18
EAR_close_density_plot <- motifstorage_EARc %>% 
  mutate(sequence_id= gsub("_resized","",sequence_id)) %>% 
  dplyr::filter(sequence_id == "EAR_close" | sequence_id == "NR") %>%
   mutate(position=motif_position.start-200) %>% 
  ggplot(., aes(position, color = sequence_id)) +
  geom_density(trim = FALSE, size = 1.5) +
  theme_bw() +
  scale_color_manual(values = mrc_palette) +
  ggtitle("Atf3")

# Assuming you already have the motif in a matrix or data frame for ggseqlogo

EAR_close_matrix_eg <- holder_EAR_close@motif  # If your motif is in PWM format

# Create the motif logo plot, this adds bits instead of "p" which is probability.
EAR_close_motif_logo_plot <- ggseqlogo(EAR_close_matrix_eg, method = "bits") + 
  theme_classic() +  
  ggtitle("EAR_close Motif Logo")
  
# Combine the density plot and motif logo plot using cowplot
  EAR_close_toprow <- plot_grid(NULL,EAR_close_motif_logo_plot, NULL, ncol = 3, rel_widths = c(.2,1,.2))
EAR_close_combined_plot <- plot_grid(EAR_close_toprow,EAR_close_density_plot,nrow=2, rel_heights = c(0.7,2))

# Print the combined plot
print(EAR_close_combined_plot)

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
5bf51a6 reneeisnowhere 2024-10-18

ESR_close top motif

# pw_matrix_ESRc <- convert_motifs(holder_ESR_close, class = "TFBSTools-PWMatrix")
# # 
# motif_ESR_close_18_results <- lapply(seq_all_cd_200, function(sequences) {
# matchMotifs(pw_matrix_ESRc, sequences, out = "positions")
# })
# 
# motifstorage_ESRc <-motif_positions_df <- do.call(rbind, lapply(seq_along(motif_ESR_close_18_results), function(i) {
#   positions <- motif_ESR_close_18_results[[i]]  # Positions from matchMotifs
#   seq_name <- names(seq_all_cd_200)[i]  # Get sequence ID from the original list
# 
#   if (length(positions) > 0) {
#     # Create a data frame with sequence_id and motif positions
#     data.frame(
#       sequence_id = seq_name,  # Use the sequence name here
#       motif_position = unlist(positions)
#     )
#   } else {
#     NULL  # If no positions, return NULL
#   }
# }))
# #
#  saveRDS(motifstorage_ESRc, "data/Final_four_data/matchr_ESR_close_18.RDS")
#### PLOTING CODE BELOW THIS LINE FOR ESR_close  #####
motifstorage_ESRc <- readRDS("data/Final_four_data/matchr_ESR_close_18.RDS")
motifstorage_ESRc %>% 
mutate(sequence_id= gsub("_resized","",sequence_id)) %>% 
  # dplyr::filter(id =="ESR_close"|id == "NR") %>%
   # dplyr::filter(relScore>.90) %>%
  mutate(position=motif_position.start-200) %>% 
  ggplot(.,aes(position, color = sequence_id))+
  geom_density(trim = FALSE,size=1.5) +
  theme_bw() +
  scale_color_manual(values=mrc_palette)+
  ggtitle("ZNF281")

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
5bf51a6 reneeisnowhere 2024-10-18
ESR_close_density_plot <- motifstorage_ESRc %>% 
  mutate(sequence_id= gsub("_resized","",sequence_id)) %>% 
  dplyr::filter(sequence_id == "ESR_close" | sequence_id == "NR") %>%
   mutate(position=motif_position.start-200) %>% 
  ggplot(., aes(position, color = sequence_id)) +
  geom_density(trim = FALSE, size = 1.5) +
  theme_bw() +
  scale_color_manual(values = mrc_palette) +
  ggtitle("ZNF281")

# Assuming you already have the motif in a matrix or data frame for ggseqlogo

ESR_close_matrix_eg <- holder_ESR_close@motif  # If your motif is in PWM format

# Create the motif logo plot, this adds bits instead of "p" which is probability.
ESR_close_motif_logo_plot <- ggseqlogo(ESR_close_matrix_eg, method = "bits") + 
  theme_classic() +  
  ggtitle("ESR_close Motif Logo")
  
# Combine the density plot and motif logo plot using cowplot
  ESR_close_toprow <- plot_grid(NULL,ESR_close_motif_logo_plot, NULL, ncol = 3, rel_widths = c(.2,1,.2))
ESR_close_combined_plot <- plot_grid(ESR_close_toprow,ESR_close_density_plot,nrow=2, rel_heights = c(0.7,2))

# Print the combined plot
print(ESR_close_combined_plot)

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
5bf51a6 reneeisnowhere 2024-10-18

LR_close top motif

# pw_matrix_LRc <- convert_motifs(holder_LR_close, class = "TFBSTools-PWMatrix")
# # 
# motif_LR_close_1_results <- lapply(seq_all_cd_200, function(sequences) {
# matchMotifs(pw_matrix_LRc, sequences, out = "positions")
# })
# 
# motifstorage_LRc <-motif_positions_df <- do.call(rbind, lapply(seq_along(motif_LR_close_1_results), function(i) {
#   positions <- motif_LR_close_1_results[[i]]  # Positions from matchMotifs
#   seq_name <- names(seq_all_cd_200)[i]  # Get sequence ID from the original list
# 
#   if (length(positions) > 0) {
#     # Create a data frame with sequence_id and motif positions
#     data.frame(
#       sequence_id = seq_name,  # Use the sequence name here
#       motif_position = unlist(positions)
#     )
#   } else {
#     NULL  # If no positions, return NULL
#   }
# }))
# #
#  saveRDS(motifstorage_LRc, "data/Final_four_data/matchr_LR_close_1.RDS")
#### PLOTING CODE BELOW THIS LINE FOR LR_close  #####
motifstorage_LRc <- readRDS("data/Final_four_data/matchr_LR_close_1.RDS")
motifstorage_LRc %>% 
mutate(sequence_id= gsub("_resized","",sequence_id)) %>% 
  # dplyr::filter(id =="LR_close"|id == "NR") %>%
   # dplyr::filter(relScore>.90) %>%
  mutate(position=motif_position.start-200) %>% 
  ggplot(.,aes(position, color = sequence_id))+
  geom_density(trim = FALSE,size=1.5) +
  theme_bw() +
  scale_color_manual(values=mrc_palette)+
  ggtitle("MEIS2")

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
5bf51a6 reneeisnowhere 2024-10-18
LR_close_density_plot <- motifstorage_LRc %>% 
  mutate(sequence_id= gsub("_resized","",sequence_id)) %>% 
  dplyr::filter(sequence_id == "LR_close" | sequence_id == "NR") %>%
   mutate(position=motif_position.start-200) %>% 
  ggplot(., aes(position, color = sequence_id)) +
  geom_density(trim = FALSE, size = 1.5) +
  theme_bw() +
  scale_color_manual(values = mrc_palette) +
  ggtitle("MEIS2")

# Assuming you already have the motif in a matrix or data frame for ggseqlogo

LR_close_matrix_eg <- holder_LR_close@motif  # If your motif is in PWM format

# Create the motif logo plot, this adds bits instead of "p" which is probability.
LR_close_motif_logo_plot <- ggseqlogo(LR_close_matrix_eg, method = "bits") + 
  theme_classic() +  
  ggtitle("LR_close Motif Logo")
  
# Combine the density plot and motif logo plot using cowplot
  LR_close_toprow <- plot_grid(NULL,LR_close_motif_logo_plot, NULL, ncol = 3, rel_widths = c(.2,1,.2))
LR_close_combined_plot <- plot_grid(LR_close_toprow,LR_close_density_plot,nrow=2, rel_heights = c(0.7,2))

# Print the combined plot
print(LR_close_combined_plot)

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
5bf51a6 reneeisnowhere 2024-10-18

ESR_opcl top motif

# pw_matrix_ESR_opcl <- convert_motifs(holder_ESR_opcl, class = "TFBSTools-PWMatrix")
# #
# motif_ESR_opcl_2_results <- lapply(seq_all_cd_200, function(sequences) {
# matchMotifs(pw_matrix_ESR_opcl, sequences, out = "positions")
# })

# motifstorage_ESR_opcl <-motif_positions_df <- do.call(rbind, lapply(seq_along(motif_ESR_opcl_2_results), function(i) {
#   positions <- motif_ESR_opcl_2_results[[i]]  # Positions from matchMotifs
#   seq_name <- names(seq_all_cd_200)[i]  # Get sequence ID from the original list
# # 
#   if (length(positions) > 0) {
#     # Create a data frame with sequence_id and motif positions
#     data.frame(
#       sequence_id = seq_name,  # Use the sequence name here
#       motif_position = unlist(positions)
#     )
#   } else {
#     NULL  # If no positions, return NULL
#   }
# }))
#
 # saveRDS(motifstorage_ESR_opcl, "data/Final_four_data/matchr_ESR_opcl_2.RDS")
#### PLOTING CODE BELOW THIS LINE FOR ESR_opcl  #####
motifstorage_ESR_opcl <- readRDS("data/Final_four_data/matchr_ESR_opcl_2.RDS")
motifstorage_ESR_opcl %>% 
mutate(sequence_id= gsub("_resized","",sequence_id)) %>% 
  # dplyr::filter(id =="ESR_opcl"|id == "NR") %>%
   # dplyr::filter(relScore>.90) %>%
  mutate(position=motif_position.start-200) %>% 
  ggplot(.,aes(position, color = sequence_id))+
  geom_density(trim = FALSE,size=1.5) +
  theme_bw() +
  scale_color_manual(values=mrc_palette)+
  ggtitle("ZNF384")

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
5bf51a6 reneeisnowhere 2024-10-18
ESR_opcl_density_plot <- motifstorage_ESR_opcl %>% 
  mutate(sequence_id= gsub("_resized","",sequence_id)) %>% 
  dplyr::filter(sequence_id == "ESR_C" | sequence_id == "NR") %>%
   mutate(position=motif_position.start-200) %>% 
  ggplot(., aes(position, color = sequence_id)) +
  geom_density(trim = FALSE, size = 1.5) +
  theme_bw() +
  scale_color_manual(values = mrc_palette) +
  ggtitle("ZNF384")

# Assuming you already have the motif in a matrix or data frame for ggseqlogo

ESR_opcl_matrix_eg <- holder_ESR_opcl@motif  # If your motif is in PWM format

# Create the motif logo plot, this adds bits instead of "p" which is probability.
ESR_opcl_motif_logo_plot <- ggseqlogo(ESR_opcl_matrix_eg, method = "bits") + 
  theme_classic() +  
  ggtitle("ESR_opcl Motif Logo")
  
# Combine the density plot and motif logo plot using cowplot
  ESR_opcl_toprow <- plot_grid(NULL,ESR_opcl_motif_logo_plot, NULL, ncol = 3, rel_widths = c(.2,1,.2))
ESR_opcl_combined_plot <- plot_grid(ESR_opcl_toprow,ESR_opcl_density_plot,nrow=2, rel_heights = c(0.7,2))

# Print the combined plot
print(ESR_opcl_combined_plot)

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
5bf51a6 reneeisnowhere 2024-10-18

ESR_clop top motif

# pw_matrix_ESR_clop <- convert_motifs(holder_ESR_clop, class = "TFBSTools-PWMatrix")
# # #
# motif_ESR_clop_1_results <- lapply(seq_all_cd_200, function(sequences) {
# matchMotifs(pw_matrix_ESR_clop, sequences, out = "positions")
# })

# motifstorage_ESR_clop <-motif_positions_df <- do.call(rbind, lapply(seq_along(motif_ESR_clop_1_results), function(i) {
#   positions <- motif_ESR_clop_1_results[[i]]  # Positions from matchMotifs
#   seq_name <- names(seq_all_cd_200)[i]  # Get sequence ID from the original list
# #
#   if (length(positions) > 0) {
#     # Create a data frame with sequence_id and motif positions
#     data.frame(
#       sequence_id = seq_name,  # Use the sequence name here
#       motif_position = unlist(positions)
#     )
#   } else {
#     NULL  # If no positions, return NULL
#   }
# }))
#
 # saveRDS(motifstorage_ESR_clop, "data/Final_four_data/matchr_ESR_clop_1.RDS")
#### PLOTING CODE BELOW THIS LINE FOR ESR_clop  #####
motifstorage_ESR_clop <- readRDS("data/Final_four_data/matchr_ESR_clop_1.RDS")
motifstorage_ESR_clop %>% 
mutate(sequence_id= gsub("_resized","",sequence_id)) %>% 
  # dplyr::filter(id =="ESR_clop"|id == "NR") %>%
   # dplyr::filter(relScore>.90) %>%
  mutate(position=motif_position.start-200) %>% 
  ggplot(.,aes(position, color = sequence_id))+
  geom_density(trim = FALSE,size=1.5) +
  theme_bw() +
  scale_color_manual(values=mrc_palette)+
  ggtitle("ATF3")

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
5bf51a6 reneeisnowhere 2024-10-18
ESR_clop_density_plot <- motifstorage_ESR_clop %>% 
  mutate(sequence_id= gsub("_resized","",sequence_id)) %>% 
  dplyr::filter(sequence_id == "ESR_D" | sequence_id == "NR") %>%
   mutate(position=motif_position.start-200) %>% 
  ggplot(., aes(position, color = sequence_id)) +
  geom_density(trim = FALSE, size = 1.5) +
  theme_bw() +
  scale_color_manual(values = mrc_palette) +
  ggtitle("ATF3")

# Assuming you already have the motif in a matrix or data frame for ggseqlogo

ESR_clop_matrix_eg <- holder_ESR_clop@motif  # If your motif is in PWM format

# Create the motif logo plot, this adds bits instead of "p" which is probability.
ESR_clop_motif_logo_plot <- ggseqlogo(ESR_clop_matrix_eg, method = "bits") + 
  theme_classic() +  
  ggtitle("ESR_clop Motif Logo")
  
# Combine the density plot and motif logo plot using cowplot
  ESR_clop_toprow <- plot_grid(NULL,ESR_clop_motif_logo_plot, NULL, ncol = 3, rel_widths = c(.2,1,.2))
ESR_clop_combined_plot <- plot_grid(ESR_clop_toprow,ESR_clop_density_plot,nrow=2, rel_heights = c(0.7,2))

# Print the combined plot
print(ESR_clop_combined_plot)

Version Author Date
8520f12 E. Renee Matthews 2025-01-27
5bf51a6 reneeisnowhere 2024-10-18

sessionInfo()
R version 4.4.2 (2024-10-31 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 26100)

Matrix products: default


locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

time zone: America/Chicago
tzcode source: internal

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] motifmatchr_1.28.0                      
 [2] ggseqlogo_0.2                           
 [3] universalmotif_1.24.2                   
 [4] data.table_1.17.0                       
 [5] BSgenome.Hsapiens.UCSC.hg38_1.4.5       
 [6] BSgenome_1.74.0                         
 [7] BiocIO_1.16.0                           
 [8] MotifDb_1.48.0                          
 [9] Biostrings_2.74.1                       
[10] XVector_0.46.0                          
[11] TFBSTools_1.44.0                        
[12] JASPAR2022_0.99.8                       
[13] BiocFileCache_2.14.0                    
[14] dbplyr_2.5.0                            
[15] devtools_2.4.5                          
[16] usethis_3.1.0                           
[17] ggpubr_0.6.0                            
[18] BiocParallel_1.40.0                     
[19] Cormotif_1.52.0                         
[20] affy_1.84.0                             
[21] scales_1.3.0                            
[22] VennDiagram_1.7.3                       
[23] futile.logger_1.4.3                     
[24] gridExtra_2.3                           
[25] ggfortify_0.4.17                        
[26] edgeR_4.4.2                             
[27] limma_3.62.2                            
[28] rtracklayer_1.66.0                      
[29] org.Hs.eg.db_3.20.0                     
[30] TxDb.Hsapiens.UCSC.hg38.knownGene_3.20.0
[31] GenomicFeatures_1.58.0                  
[32] AnnotationDbi_1.68.0                    
[33] Biobase_2.66.0                          
[34] GenomicRanges_1.58.0                    
[35] GenomeInfoDb_1.42.3                     
[36] IRanges_2.40.1                          
[37] S4Vectors_0.44.0                        
[38] BiocGenerics_0.52.0                     
[39] ChIPseeker_1.42.1                       
[40] RColorBrewer_1.1-3                      
[41] broom_1.0.7                             
[42] kableExtra_1.4.0                        
[43] cowplot_1.1.3                           
[44] lubridate_1.9.4                         
[45] forcats_1.0.0                           
[46] stringr_1.5.1                           
[47] dplyr_1.1.4                             
[48] purrr_1.0.4                             
[49] readr_2.1.5                             
[50] tidyr_1.3.1                             
[51] tibble_3.2.1                            
[52] ggplot2_3.5.1                           
[53] tidyverse_2.0.0                         
[54] workflowr_1.7.1                         

loaded via a namespace (and not attached):
  [1] fs_1.6.5                               
  [2] matrixStats_1.5.0                      
  [3] bitops_1.0-9                           
  [4] DirichletMultinomial_1.48.0            
  [5] enrichplot_1.26.6                      
  [6] httr_1.4.7                             
  [7] profvis_0.4.0                          
  [8] tools_4.4.2                            
  [9] backports_1.5.0                        
 [10] utf8_1.2.4                             
 [11] R6_2.6.1                               
 [12] lazyeval_0.2.2                         
 [13] urlchecker_1.0.1                       
 [14] withr_3.0.2                            
 [15] preprocessCore_1.68.0                  
 [16] cli_3.6.4                              
 [17] formatR_1.14                           
 [18] labeling_0.4.3                         
 [19] sass_0.4.9                             
 [20] Rsamtools_2.22.0                       
 [21] systemfonts_1.2.1                      
 [22] yulab.utils_0.2.0                      
 [23] DOSE_4.0.0                             
 [24] svglite_2.1.3                          
 [25] R.utils_2.13.0                         
 [26] sessioninfo_1.2.3                      
 [27] plotrix_3.8-4                          
 [28] rstudioapi_0.17.1                      
 [29] RSQLite_2.3.9                          
 [30] generics_0.1.3                         
 [31] gridGraphics_0.5-1                     
 [32] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
 [33] gtools_3.9.5                           
 [34] car_3.1-3                              
 [35] GO.db_3.20.0                           
 [36] Matrix_1.7-3                           
 [37] abind_1.4-8                            
 [38] R.methodsS3_1.8.2                      
 [39] lifecycle_1.0.4                        
 [40] whisker_0.4.1                          
 [41] yaml_2.3.10                            
 [42] carData_3.0-5                          
 [43] SummarizedExperiment_1.36.0            
 [44] gplots_3.2.0                           
 [45] qvalue_2.38.0                          
 [46] SparseArray_1.6.2                      
 [47] blob_1.2.4                             
 [48] promises_1.3.2                         
 [49] pwalign_1.2.0                          
 [50] crayon_1.5.3                           
 [51] miniUI_0.1.1.1                         
 [52] ggtangle_0.0.6                         
 [53] lattice_0.22-6                         
 [54] annotate_1.84.0                        
 [55] KEGGREST_1.46.0                        
 [56] pillar_1.10.1                          
 [57] knitr_1.49                             
 [58] fgsea_1.32.2                           
 [59] rjson_0.2.23                           
 [60] boot_1.3-31                            
 [61] codetools_0.2-20                       
 [62] fastmatch_1.1-6                        
 [63] glue_1.8.0                             
 [64] getPass_0.2-4                          
 [65] ggfun_0.1.8                            
 [66] remotes_2.5.0                          
 [67] vctrs_0.6.5                            
 [68] png_0.1-8                              
 [69] treeio_1.30.0                          
 [70] poweRlaw_1.0.0                         
 [71] gtable_0.3.6                           
 [72] cachem_1.1.0                           
 [73] xfun_0.51                              
 [74] S4Arrays_1.6.0                         
 [75] mime_0.12                              
 [76] statmod_1.5.0                          
 [77] ellipsis_0.3.2                         
 [78] nlme_3.1-167                           
 [79] ggtree_3.14.0                          
 [80] bit64_4.6.0-1                          
 [81] filelock_1.0.3                         
 [82] rprojroot_2.0.4                        
 [83] bslib_0.9.0                            
 [84] affyio_1.76.0                          
 [85] KernSmooth_2.23-26                     
 [86] splitstackshape_1.4.8                  
 [87] seqLogo_1.72.0                         
 [88] colorspace_2.1-1                       
 [89] DBI_1.2.3                              
 [90] tidyselect_1.2.1                       
 [91] processx_3.8.6                         
 [92] bit_4.6.0                              
 [93] compiler_4.4.2                         
 [94] curl_6.2.1                             
 [95] git2r_0.35.0                           
 [96] xml2_1.3.7                             
 [97] DelayedArray_0.32.0                    
 [98] caTools_1.18.3                         
 [99] callr_3.7.6                            
[100] digest_0.6.37                          
[101] rmarkdown_2.29                         
[102] htmltools_0.5.8.1                      
[103] pkgconfig_2.0.3                        
[104] MatrixGenerics_1.18.1                  
[105] fastmap_1.2.0                          
[106] rlang_1.1.5                            
[107] htmlwidgets_1.6.4                      
[108] UCSC.utils_1.2.0                       
[109] shiny_1.10.0                           
[110] farver_2.1.2                           
[111] jquerylib_0.1.4                        
[112] jsonlite_1.9.1                         
[113] GOSemSim_2.32.0                        
[114] R.oo_1.27.0                            
[115] RCurl_1.98-1.16                        
[116] magrittr_2.0.3                         
[117] Formula_1.2-5                          
[118] GenomeInfoDbData_1.2.13                
[119] ggplotify_0.1.2                        
[120] patchwork_1.3.0                        
[121] munsell_0.5.1                          
[122] Rcpp_1.0.14                            
[123] ape_5.8-1                              
[124] stringi_1.8.4                          
[125] MASS_7.3-65                            
[126] zlibbioc_1.52.0                        
[127] plyr_1.8.9                             
[128] pkgbuild_1.4.6                         
[129] parallel_4.4.2                         
[130] ggrepel_0.9.6                          
[131] CNEr_1.42.0                            
[132] splines_4.4.2                          
[133] hms_1.1.3                              
[134] locfit_1.5-9.12                        
[135] ps_1.9.0                               
[136] igraph_2.1.4                           
[137] ggsignif_0.6.4                         
[138] reshape2_1.4.4                         
[139] pkgload_1.4.0                          
[140] TFMPvalue_0.0.9                        
[141] futile.options_1.0.1                   
[142] XML_3.99-0.18                          
[143] evaluate_1.0.3                         
[144] lambda.r_1.2.4                         
[145] BiocManager_1.30.25                    
[146] tzdb_0.4.0                             
[147] httpuv_1.6.15                          
[148] xtable_1.8-4                           
[149] restfulr_0.0.15                        
[150] tidytree_0.4.6                         
[151] rstatix_0.7.2                          
[152] later_1.4.1                            
[153] viridisLite_0.4.2                      
[154] aplot_0.2.5                            
[155] memoise_2.0.1                          
[156] GenomicAlignments_1.42.0               
[157] timechange_0.3.0