Last updated: 2025-07-29

Checks: 7 0

Knit directory: ATAC_learning/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20231016) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version f8c0205. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/H3K27ac_integration_noM.Rmd
    Ignored:    data/ACresp_SNP_table.csv
    Ignored:    data/ARR_SNP_table.csv
    Ignored:    data/All_merged_peaks.tsv
    Ignored:    data/CAD_gwas_dataframe.RDS
    Ignored:    data/CTX_SNP_table.csv
    Ignored:    data/Collapsed_expressed_NG_peak_table.csv
    Ignored:    data/DEG_toplist_sep_n45.RDS
    Ignored:    data/FRiP_first_run.txt
    Ignored:    data/Final_four_data/
    Ignored:    data/Frip_1_reads.csv
    Ignored:    data/Frip_2_reads.csv
    Ignored:    data/Frip_3_reads.csv
    Ignored:    data/Frip_4_reads.csv
    Ignored:    data/Frip_5_reads.csv
    Ignored:    data/Frip_6_reads.csv
    Ignored:    data/GO_KEGG_analysis/
    Ignored:    data/HF_SNP_table.csv
    Ignored:    data/Ind1_75DA24h_dedup_peaks.csv
    Ignored:    data/Ind1_TSS_peaks.RDS
    Ignored:    data/Ind1_firstfragment_files.txt
    Ignored:    data/Ind1_fragment_files.txt
    Ignored:    data/Ind1_peaks_list.RDS
    Ignored:    data/Ind1_summary.txt
    Ignored:    data/Ind2_TSS_peaks.RDS
    Ignored:    data/Ind2_fragment_files.txt
    Ignored:    data/Ind2_peaks_list.RDS
    Ignored:    data/Ind2_summary.txt
    Ignored:    data/Ind3_TSS_peaks.RDS
    Ignored:    data/Ind3_fragment_files.txt
    Ignored:    data/Ind3_peaks_list.RDS
    Ignored:    data/Ind3_summary.txt
    Ignored:    data/Ind4_79B24h_dedup_peaks.csv
    Ignored:    data/Ind4_TSS_peaks.RDS
    Ignored:    data/Ind4_V24h_fraglength.txt
    Ignored:    data/Ind4_fragment_files.txt
    Ignored:    data/Ind4_fragment_filesN.txt
    Ignored:    data/Ind4_peaks_list.RDS
    Ignored:    data/Ind4_summary.txt
    Ignored:    data/Ind5_TSS_peaks.RDS
    Ignored:    data/Ind5_fragment_files.txt
    Ignored:    data/Ind5_fragment_filesN.txt
    Ignored:    data/Ind5_peaks_list.RDS
    Ignored:    data/Ind5_summary.txt
    Ignored:    data/Ind6_TSS_peaks.RDS
    Ignored:    data/Ind6_fragment_files.txt
    Ignored:    data/Ind6_peaks_list.RDS
    Ignored:    data/Ind6_summary.txt
    Ignored:    data/Knowles_4.RDS
    Ignored:    data/Knowles_5.RDS
    Ignored:    data/Knowles_6.RDS
    Ignored:    data/LiSiLTDNRe_TE_df.RDS
    Ignored:    data/MI_gwas.RDS
    Ignored:    data/SNP_GWAS_PEAK_MRC_id
    Ignored:    data/SNP_GWAS_PEAK_MRC_id.csv
    Ignored:    data/SNP_gene_cat_list.tsv
    Ignored:    data/SNP_supp_schneider.RDS
    Ignored:    data/TE_info/
    Ignored:    data/TFmapnames.RDS
    Ignored:    data/all_TSSE_scores.RDS
    Ignored:    data/all_four_filtered_counts.txt
    Ignored:    data/aln_run1_results.txt
    Ignored:    data/anno_ind1_DA24h.RDS
    Ignored:    data/anno_ind4_V24h.RDS
    Ignored:    data/annotated_gwas_SNPS.csv
    Ignored:    data/background_n45_he_peaks.RDS
    Ignored:    data/cardiac_muscle_FRIP.csv
    Ignored:    data/cardiomyocyte_FRIP.csv
    Ignored:    data/col_ng_peak.csv
    Ignored:    data/cormotif_full_4_run.RDS
    Ignored:    data/cormotif_full_4_run_he.RDS
    Ignored:    data/cormotif_full_6_run.RDS
    Ignored:    data/cormotif_full_6_run_he.RDS
    Ignored:    data/cormotif_probability_45_list.csv
    Ignored:    data/cormotif_probability_45_list_he.csv
    Ignored:    data/cormotif_probability_all_6_list.csv
    Ignored:    data/cormotif_probability_all_6_list_he.csv
    Ignored:    data/datasave.RDS
    Ignored:    data/embryo_heart_FRIP.csv
    Ignored:    data/enhancer_list_ENCFF126UHK.bed
    Ignored:    data/enhancerdata/
    Ignored:    data/filt_Peaks_efit2.RDS
    Ignored:    data/filt_Peaks_efit2_bl.RDS
    Ignored:    data/filt_Peaks_efit2_n45.RDS
    Ignored:    data/first_Peaksummarycounts.csv
    Ignored:    data/first_run_frag_counts.txt
    Ignored:    data/full_bedfiles/
    Ignored:    data/gene_ref.csv
    Ignored:    data/gwas_1_dataframe.RDS
    Ignored:    data/gwas_2_dataframe.RDS
    Ignored:    data/gwas_3_dataframe.RDS
    Ignored:    data/gwas_4_dataframe.RDS
    Ignored:    data/gwas_5_dataframe.RDS
    Ignored:    data/high_conf_peak_counts.csv
    Ignored:    data/high_conf_peak_counts.txt
    Ignored:    data/high_conf_peaks_bl_counts.txt
    Ignored:    data/high_conf_peaks_counts.txt
    Ignored:    data/hits_files/
    Ignored:    data/hyper_files/
    Ignored:    data/hypo_files/
    Ignored:    data/ind1_DA24hpeaks.RDS
    Ignored:    data/ind1_TSSE.RDS
    Ignored:    data/ind2_TSSE.RDS
    Ignored:    data/ind3_TSSE.RDS
    Ignored:    data/ind4_TSSE.RDS
    Ignored:    data/ind4_V24hpeaks.RDS
    Ignored:    data/ind5_TSSE.RDS
    Ignored:    data/ind6_TSSE.RDS
    Ignored:    data/initial_complete_stats_run1.txt
    Ignored:    data/left_ventricle_FRIP.csv
    Ignored:    data/median_24_lfc.RDS
    Ignored:    data/median_3_lfc.RDS
    Ignored:    data/mergedPeads.gff
    Ignored:    data/mergedPeaks.gff
    Ignored:    data/motif_list_full
    Ignored:    data/motif_list_n45
    Ignored:    data/motif_list_n45.RDS
    Ignored:    data/multiqc_fastqc_run1.txt
    Ignored:    data/multiqc_fastqc_run2.txt
    Ignored:    data/multiqc_genestat_run1.txt
    Ignored:    data/multiqc_genestat_run2.txt
    Ignored:    data/my_hc_filt_counts.RDS
    Ignored:    data/my_hc_filt_counts_n45.RDS
    Ignored:    data/n45_bedfiles/
    Ignored:    data/n45_files
    Ignored:    data/other_papers/
    Ignored:    data/peakAnnoList_1.RDS
    Ignored:    data/peakAnnoList_2.RDS
    Ignored:    data/peakAnnoList_24_full.RDS
    Ignored:    data/peakAnnoList_24_n45.RDS
    Ignored:    data/peakAnnoList_3.RDS
    Ignored:    data/peakAnnoList_3_full.RDS
    Ignored:    data/peakAnnoList_3_n45.RDS
    Ignored:    data/peakAnnoList_4.RDS
    Ignored:    data/peakAnnoList_5.RDS
    Ignored:    data/peakAnnoList_6.RDS
    Ignored:    data/peakAnnoList_Eight.RDS
    Ignored:    data/peakAnnoList_full_motif.RDS
    Ignored:    data/peakAnnoList_n45_motif.RDS
    Ignored:    data/siglist_full.RDS
    Ignored:    data/siglist_n45.RDS
    Ignored:    data/summarized_peaks_dataframe.txt
    Ignored:    data/summary_peakIDandReHeat.csv
    Ignored:    data/test.list.RDS
    Ignored:    data/testnames.txt
    Ignored:    data/toplist_6.RDS
    Ignored:    data/toplist_full.RDS
    Ignored:    data/toplist_full_DAR_6.RDS
    Ignored:    data/toplist_n45.RDS
    Ignored:    data/trimmed_seq_length.csv
    Ignored:    data/unclassified_full_set_peaks.RDS
    Ignored:    data/unclassified_n45_set_peaks.RDS
    Ignored:    data/xstreme/

Untracked files:
    Untracked:  RNA_seq_integration.Rmd
    Untracked:  Rplot.pdf
    Untracked:  Sig_meta
    Untracked:  analysis/.gitignore
    Untracked:  analysis/Cormotif_analysis_testing diff.Rmd
    Untracked:  analysis/Diagnosis-tmm.Rmd
    Untracked:  analysis/Expressed_RNA_associations.Rmd
    Untracked:  analysis/IF_counts_20x.Rmd
    Untracked:  analysis/LFC_corr.Rmd
    Untracked:  analysis/SVA.Rmd
    Untracked:  analysis/Tan2020.Rmd
    Untracked:  analysis/making_master_peaks_list.Rmd
    Untracked:  analysis/my_hc_filt_counts.csv
    Untracked:  code/Concatenations_for_export.R
    Untracked:  code/IGV_snapshot_code.R
    Untracked:  code/LongDARlist.R
    Untracked:  code/just_for_Fun.R
    Untracked:  my_plot.pdf
    Untracked:  my_plot.png
    Untracked:  output/cormotif_probability_45_list.csv
    Untracked:  output/cormotif_probability_all_6_list.csv
    Untracked:  setup.RData

Unstaged changes:
    Modified:   ATAC_learning.Rproj
    Modified:   analysis/AC_shared_analysis.Rmd
    Modified:   analysis/AF_HF_SNPs.Rmd
    Modified:   analysis/Cardiotox_SNPs.Rmd
    Modified:   analysis/Cormotif_analysis.Rmd
    Modified:   analysis/DEG_analysis.Rmd
    Modified:   analysis/H3K27ac_initial_QC.Rmd
    Modified:   analysis/H3K27ac_integration.Rmd
    Modified:   analysis/Jaspar_motif.Rmd
    Modified:   analysis/Jaspar_motif_ff.Rmd
    Modified:   analysis/TE_analysis_norm.Rmd
    Modified:   analysis/Top2B_analysis.Rmd
    Modified:   analysis/final_four_analysis.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SNP_TAD_peaks.Rmd) and HTML (docs/SNP_TAD_peaks.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd f8c0205 reneeisnowhere 2025-07-29 adding dars loci
html b1638d9 reneeisnowhere 2025-07-29 Build site.
Rmd ad110ea reneeisnowhere 2025-07-29 updates
html 1429820 reneeisnowhere 2025-07-21 Build site.
Rmd b838697 reneeisnowhere 2025-07-21 adding in SNP overlap heatmap
html 1a9df02 reneeisnowhere 2025-07-09 Build site.
Rmd 0fa75c3 reneeisnowhere 2025-07-09 wflow_publish("analysis/SNP_TAD_peaks.Rmd")

library(tidyverse)
library(kableExtra)
library(broom)
library(RColorBrewer)
library(ChIPseeker)
library(ChIPpeakAnno)
library("TxDb.Hsapiens.UCSC.hg38.knownGene")
library("org.Hs.eg.db")
library(rtracklayer)
library(edgeR)
library(ggfortify)
library(limma)
library(readr)
library(BiocGenerics)
library(gridExtra)
library(VennDiagram)
library(scales)
library(BiocParallel)
library(ggpubr)
library(devtools)
library(biomaRt)
library(eulerr)
library(smplot2)
library(genomation)
library(ggsignif)
library(plyranges)
library(ggrepel)
library(epitools)
library(circlize)
library(readxl)
library(ComplexHeatmap)
library(gwascat)
library(liftOver)

Loading data frames

### Pulling the all regions granges list from the motif list of lists
Motif_list_gr <- readRDS("data/Final_four_data/re_analysis/Motif_list_granges.RDS")
### no change motif_list_gr names so they do not overwrite the dataframes
names(Motif_list_gr) <- paste0(names(Motif_list_gr), "_gr")
list2env(Motif_list_gr[10],envir= .GlobalEnv)
<environment: R_GlobalEnv>
annotated_DARs<- readRDS("data/Final_four_data/re_analysis/DOX_DAR_annotated_peaks_chipannno.RDS")

Left_ventricle_TAD <- import(con = "C://Users/renee/Downloads/hg38.TADs/hg38/VentricleLeft_STL003_Leung_2015-raw_TADs.txt", format = "bed",genome="hg38")
mcols(Left_ventricle_TAD)$TAD_id <- paste0("TAD_", seq_along(Left_ventricle_TAD))



# mcols(Left_ventricle_TAD)$name <- Left_ventricle_TAD$TAD_id
##exporting the LEFt ventricle tad  info for IGV visualization
# export(Left_ventricle_TAD, con = "data/Final_four_data/re_analysis/Other_bed_files/TAD_regions.bed", format="bed")

Schneider_all_SNPS <- read_delim("data/other_papers/Schneider_all_SNPS.txt", 
    delim = "\t", escape_double = FALSE, 
    trim_ws = TRUE)

Schneider_all_SNPS_df <- Schneider_all_SNPS %>%
  dplyr::rename("RSID"="#Uploaded_variation") %>% 
  dplyr::select(RSID,Location,SYMBOL,Gene, SOURCE) %>%
  distinct(RSID,Location,SYMBOL,.keep_all = TRUE) %>% 
  dplyr::rename("Close_SYMBOL"="SYMBOL") %>% 
  dplyr::filter(!str_starts(Location, "H")) %>% 
  separate_wider_delim(Location,delim=":",names=c("Chr","Coords")) %>% 
  separate_wider_delim(Coords,delim= "-", names= c("Start","End")) %>% 
  mutate(Chr=paste0("chr",Chr)) %>% 
  group_by(RSID) %>% 
  reframe(Chr=unique(Chr),
            Start=unique(Start),
            End=unique(End),
            Close_SYMBOL=paste(unique(Close_SYMBOL),collapse=";"),
            Gene=paste(Gene,collapse=";"),
            SOURCE=paste(SOURCE,collapse=";")
            ) %>% 
  GRanges() %>% as.data.frame 

schneider_gr <-Schneider_all_SNPS_df%>%
  dplyr::select(seqnames,start,end,RSID:SOURCE) %>%
  distinct() %>% 
  GRanges()

# export(schneider_gr, con = "data/Final_four_data/re_analysis/Other_bed_files/CardiotoxSNPs.bed", format="bed")

toptable_results <- readRDS("data/Final_four_data/re_analysis/Toptable_results.RDS")

all_results  <- toptable_results %>%
  imap(~ .x %>% tibble::rownames_to_column(var = "rowname") %>%
         mutate(source = .y)) %>%
  bind_rows()
all_results_pivot <- all_results %>% 
dplyr::select(genes,logFC,source) %>% 
  pivot_wider(., id_cols = genes, names_from = source, values_from = logFC) %>% 
  dplyr::select(genes,DOX_3,EPI_3,DNR_3,MTX_3,TRZ_3,DOX_24,EPI_24,DNR_24,MTX_24,TRZ_24)


toplistall_RNA <- readRDS("data/other_papers/toplistall_RNA.RDS") %>% 
  mutate(logFC = logFC*(-1))

Assigned_genes_toPeak <- annotated_DARs$DOX_24 %>% as.data.frame() %>% 
  dplyr::select(mcols.genes,annotation, geneId, distanceToTSS) %>% 
  dplyr::rename("Peakid"=mcols.genes)

RNA_results <-
toplistall_RNA %>% 
  dplyr::select(time:logFC) %>% 
  tidyr::unite("sample",time, id) %>% 
  pivot_wider(., id_cols = c(ENTREZID,SYMBOL),names_from = sample, values_from = logFC) %>% 
  rename_with(~ str_replace(., "hours", "RNA"))

Peak_gene_RNA_LFC <- Assigned_genes_toPeak %>% 
  left_join(., RNA_results, by =c("geneId"="ENTREZID"))


entrez_ids <- Assigned_genes_toPeak$geneId  


gene_info <- AnnotationDbi::select(
  org.Hs.eg.db,
  keys = entrez_ids,
  columns = c("SYMBOL"),
  keytype = "ENTREZID"
)
gene_info_collapsed <- gene_info %>%
  group_by(ENTREZID) %>%
  summarise(SYMBOL = paste(unique(SYMBOL), collapse = ","), .groups = "drop")
DOX_DAR_24hr_table <- annotated_DARs$DOX_24 %>% 
  as.data.frame()

Top2b_peaks <- import(con="data/other_papers/ChIP3_TOP2B_CM_87-1.bed",format = "bed",genome="hg38")
# for_export <- DOX_24_DAR%>%
#   # as.data.frame() %>%
#   ### mark significance with color
#   mutate(sig_24=if_else(mcols.adj.P.Val<0.05,"TRUE","FALSE")) %>%
#   dplyr::select(seqnames:mcols.genes,sig_24) %>%
#   GRanges
# 
# ### add to the granges thingy for exporting
# mcols(for_export)$itemRgb <-  ifelse(mcols(for_export)$sig_24,
#                                  "255,0,0",   # red for significant
#                                  "190,190,190")  # gray for not significant
# mcols(for_export)$sig_24 <- as.logical(mcols(for_export)$sig_24)
# mcols(for_export)$itemRgb <- as.character(mcols(for_export)$itemRgb)
# 
# bed_df <- data.frame(
#   seqnames = seqnames(for_export),
#   start    = start(for_export) - 1,  # BED is 0-based
#   end      = end(for_export),
#   strand   = "*",
#   thickStart = start(for_export) - 1,
#   thickEnd   = end(for_export),
#   itemRgb  = ifelse(mcols(for_export)$sig_24, "255,0,0", "190,190,190"),
#   stringsAsFactors = FALSE)
# # )
# 
# write.table(bed_df,
#             file = "data/Final_four_data/re_analysis/Other_bed_files/DOX_24hour_sig_notsig_regions.bed",
#             quote = FALSE, sep = "\t", row.names = FALSE, col.names = FALSE)

Enrichment test of sig DAR and non-sig DAR of DOX within SNP-containing TADS

test_ol <- join_overlap_intersect(Left_ventricle_TAD, schneider_gr)
df <- as.data.frame(test_ol, row.names = NULL)
TAD_SNP_ol <- test_ol %>% as.data.frame() %>% 
  distinct(TAD_id, RSID)
peak_ol <- join_overlap_intersect(all_regions_gr, Left_ventricle_TAD)

TAD_SNP_Peak_ol <- peak_ol %>% 
  as.data.frame() %>% 
  dplyr::filter(TAD_id %in% TAD_SNP_ol$TAD_id)
snp_ol <- join_overlap_inner(schneider_gr, Left_ventricle_TAD)
TAD_peak_ol <- peak_ol %>% 
  as.data.frame() %>% 
  distinct(Peakid,.keep_all = TRUE)

left_ventricle_ol <- join_overlap_inner(all_regions_gr ,Left_ventricle_TAD) %>% 
  as.data.frame() %>% 
  distinct(Peakid,.keep_all = TRUE) %>% 
  dplyr::filter(TAD_id %in% TAD_SNP_ol$TAD_id)

peak_df <- as.data.frame(left_ventricle_ol)
SNP_df <- as.data.frame(snp_ol)

peak_snp_pairs <- inner_join(peak_df, SNP_df, by = "TAD_id", suffix = c(".peak", ".snp")) %>%
  mutate(
    peak_center = (start.peak + end.peak) / 2,
    distance = abs(peak_center - start.snp)  # or any metric you prefer
  )
reds <- colorRampPalette(brewer.pal(9, "Reds")[3:9])(12)
greens <- colorRampPalette(brewer.pal(9, "Greens")[3:9])(12)
blues <- colorRampPalette(brewer.pal(9, "Blues")[3:9])(12)
purples <- colorRampPalette(brewer.pal(9, "Purples")[3:9])(12)
oranges <- colorRampPalette(brewer.pal(9, "Oranges")[3:9])(12)



tads <- unique(peak_snp_pairs$TAD_id)
num_tads <- length(tads)

color_spectrum <- c(reds, greens, blues, purples, oranges)[1:num_tads]

if (num_tads > length(color_spectrum)) {
  stop("Not enough colors for TADs. Add more palettes.")
}
tad_colors <- color_spectrum[1:num_tads]
names(tad_colors) <- tads  # Assign color names to TAD IDs


#ha <- HeatmapAnnotation(TAD = df$TAD_id, col = list(TAD = tad_colors))
Top2b_overlap_regions <-join_overlap_inner(all_regions_gr ,Top2b_peaks) %>%
  as.data.frame() %>% 
  distinct(Peakid,.keep_all = TRUE) 
DOX_24_DAR <- as.data.frame(annotated_DARs$DOX_24)
EPI_24_DAR <- as.data.frame(annotated_DARs$EPI_24)
DNR_24_DAR <- as.data.frame(annotated_DARs$DNR_24)
MTX_24_DAR <- as.data.frame(annotated_DARs$MTX_24)

DOX_3_DAR <- as.data.frame(annotated_DARs$DOX_3)
EPI_3_DAR <- as.data.frame(annotated_DARs$EPI_3)
DNR_3_DAR <- as.data.frame(annotated_DARs$DNR_3)
MTX_3_DAR <- as.data.frame(annotated_DARs$MTX_3)


TAD_count_df <- DOX_24_DAR %>% 
  dplyr::select(mcols.genes, mcols.adj.P.Val,annotation:distanceToTSS) %>% 
  mutate(sig_24=if_else(mcols.adj.P.Val<0.05,"sig","not_sig")) %>% 
  mutate(sig_24=factor(sig_24, levels = c("sig","not_sig"))) %>% 
  mutate(TAD_all_status=if_else(mcols.genes %in% peak_ol$Peakid,"TAD_peak","not_TAD_peak")) %>% 
  mutate(SNP_TAD_status= if_else(mcols.genes %in% TAD_SNP_Peak_ol$Peakid,"SNP_TAD","not_SNP_TAD")) %>%
  mutate(Top2b_peak= if_else(mcols.genes %in% Top2b_overlap_regions$Peakid, "TOP2B_peak","not_TOP2B_peak"))
  
TAD_count_df %>% #dplyr::filter(TAD_all_status=="TAD_peak") %>% 
  group_by(sig_24,SNP_TAD_status,TAD_all_status) %>% 
  tally #%>% 
# A tibble: 6 × 4
# Groups:   sig_24, SNP_TAD_status [4]
  sig_24  SNP_TAD_status TAD_all_status     n
  <fct>   <chr>          <chr>          <int>
1 sig     SNP_TAD        TAD_peak        2047
2 sig     not_SNP_TAD    TAD_peak       56865
3 sig     not_SNP_TAD    not_TAD_peak    5908
4 not_sig SNP_TAD        TAD_peak        3111
5 not_sig not_SNP_TAD    TAD_peak       78627
6 not_sig not_SNP_TAD    not_TAD_peak    8999
  # pivot_wider(., id_cols = sig_24, names_from = SNP_TAD_status, values_from = n)
# print("Odds ratio of SNP_TADs across DOXall regions, regardless of TAD_status")
# TAD_count_df %>% #dplyr::filter(TAD_all_status=="TAD_peak") %>% 
#   group_by(sig_24,SNP_TAD_status) %>% 
#   tally %>% 
#   pivot_wider(., id_cols = sig_24, names_from = SNP_TAD_status, values_from = n) %>% 
#   column_to_rownames( "sig_24") %>% as.matrix() %>% 
#   # chisq.test()
#   epitools::oddsratio()
print("Odds ratio  testing proportion SNP-containing TADs of sig-DOX DARs vs non-sig DARs at 24 hours")
[1] "Odds ratio  testing proportion SNP-containing TADs of sig-DOX DARs vs non-sig DARs at 24 hours"
TAD_count_df %>% dplyr::filter(TAD_all_status=="TAD_peak") %>% 
  group_by(sig_24,SNP_TAD_status) %>% 
  tally %>% 
  pivot_wider(., id_cols = sig_24, names_from = SNP_TAD_status, values_from = n) %>% 
  column_to_rownames( "sig_24") %>% as.matrix() %>% 
  # chisq.test()
  epitools::oddsratio(method = "wald")
$data
        SNP_TAD not_SNP_TAD  Total
sig        2047       56865  58912
not_sig    3111       78627  81738
Total      5158      135492 140650

$measure
                        NA
odds ratio with 95% C.I. estimate     lower     upper
                 sig     1.000000        NA        NA
                 not_sig 0.909797 0.8595486 0.9629828

$p.value
         NA
two-sided midp.exact fisher.exact  chi.square
  sig             NA           NA          NA
  not_sig 0.00107761  0.001098901 0.001105101

$correction
[1] FALSE

attr(,"method")
[1] "Unconditional MLE & normal approximation (Wald) CI"
TAD_count_df %>% 
  dplyr::filter(TAD_all_status=="TAD_peak") %>% 
   group_by(sig_24,SNP_TAD_status) %>% 
  tally ()%>% 
   mutate(sig_24=factor(sig_24, levels = c("sig","not_sig"))) %>% 
  ggplot(.,aes(x=sig_24, y= n,fill=SNP_TAD_status))+
  geom_col(position="fill")+
  theme_bw()+
  ggtitle("Proportion of significant regions by 24 hours")+
  ylab("proportion")

Version Author Date
1429820 reneeisnowhere 2025-07-21
1a9df02 reneeisnowhere 2025-07-09
# TAD_count_df %>% 
#   dplyr::filter(TAD_all_status=="TAD_peak") %>% 
#  
#   group_by(sig_24,SNP_TAD_status) %>% 
#   tally ()%>% 
#    mutate(sig_24=factor(sig_24, levels = c("sig","not_sig"))) %>% 
#   ggplot(.,aes(x=SNP_TAD_status, y= n,fill=sig_24))+
#   geom_col(position="fill")+
#   theme_bw()+
#   ggtitle("Proportion of significant regions by 24 hours")+
#   ylab("proportion")

Proportion of DARs that overlap TOP2B peaks in a TAD

TAD_count_df %>% 
  dplyr::filter((TAD_all_status=="TAD_peak")) %>% 
  dplyr::filter(SNP_TAD_status=="SNP_TAD") %>% 
  group_by(SNP_TAD_status, Top2b_peak, sig_24) %>% 
  tally() %>% 
  pivot_wider(., id_cols=sig_24, names_from = Top2b_peak, values_from = n) %>% 
  print() %>% 
  column_to_rownames("sig_24") %>% 
  fisher.test()
# A tibble: 2 × 3
  sig_24  TOP2B_peak not_TOP2B_peak
  <fct>        <int>          <int>
1 sig             32           2015
2 not_sig        121           2990

    Fisher's Exact Test for Count Data

data:  .
p-value = 8.347e-07
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
 0.2560764 0.5863054
sample estimates:
odds ratio 
 0.3924942 

Calculating Distance to TAD-SNP from peak

*#### DOX 24 hours

DOX_DAR_sig <- DOX_24_DAR %>%
  dplyr::filter(mcols.adj.P.Val<0.05) %>% 
  distinct (mcols.genes) %>% 
  dplyr::rename("Peakid"="mcols.genes")
DOX_DAR_sig_3 <- DOX_3_DAR %>%
  dplyr::filter(mcols.adj.P.Val<0.05) %>% 
  distinct (mcols.genes) %>% 
  dplyr::rename("Peakid"="mcols.genes")

EPI_DAR_sig <- EPI_24_DAR %>%
  dplyr::filter(mcols.adj.P.Val<0.05) %>% 
  distinct (mcols.genes) %>% 
  dplyr::rename("Peakid"="mcols.genes")

EPI_DAR_sig_3 <- EPI_3_DAR %>%
  dplyr::filter(mcols.adj.P.Val<0.05) %>% 
  distinct (mcols.genes) %>% 
  dplyr::rename("Peakid"="mcols.genes")

DNR_DAR_sig <- DNR_24_DAR %>%
  dplyr::filter(mcols.adj.P.Val<0.05) %>% 
  distinct (mcols.genes) %>% 
  dplyr::rename("Peakid"="mcols.genes")
DNR_DAR_sig_3 <- DNR_3_DAR %>%
  dplyr::filter(mcols.adj.P.Val<0.05) %>% 
  distinct (mcols.genes) %>% 
  dplyr::rename("Peakid"="mcols.genes")

MTX_DAR_sig <- MTX_24_DAR %>%
  dplyr::filter(mcols.adj.P.Val<0.05) %>% 
  distinct (mcols.genes) %>% 
  dplyr::rename("Peakid"="mcols.genes")
MTX_DAR_sig_3 <- MTX_3_DAR %>%
  dplyr::filter(mcols.adj.P.Val<0.05) %>% 
  distinct (mcols.genes) %>% 
  dplyr::rename("Peakid"="mcols.genes")

MCF7_DAR_snp_pairs_dist <- readRDS("data/Final_four_data/re_analysis/MCF7_DAR_snp_pairs_dist.RDS") %>% 
  dplyr::rename("Peakid"=names) %>% 
  mutate(sig_24="MCF7_DAR")

snp_tad_df <-
  join_overlap_inner(schneider_gr, Left_ventricle_TAD) %>%
  as_tibble() %>%
  dplyr::select(RSID, snp_start = start, snp_chr = seqnames, TAD_id)


peak_tad_df <-
join_overlap_inner(all_regions_gr, Left_ventricle_TAD) %>%
  as_tibble() %>%
  dplyr::select(Peakid, peak_start = start, peak_chr = seqnames, TAD_id)

peak_snp_pairs <- peak_tad_df %>%
  inner_join(snp_tad_df, by = "TAD_id")


peak_snp_pairs_dist <- peak_snp_pairs %>%
  mutate(distance = abs(peak_start - snp_start)) %>% 
  mutate(sig_24= if_else(Peakid %in% DOX_DAR_sig$Peakid, "sig","not_sig"))



peak_snp_pairs_dist %>% 
  mutate(sig_24=factor(sig_24, levels= c("sig","not_sig"))) %>% 
  ggplot(., aes(x= sig_24, y=distance))+
  geom_boxplot()+
  theme_bw()+
  geom_signif(comparisons = list(c("sig", "not_sig")), 
              map_signif_level = FALSE, test = "wilcox.test")+
  ggtitle("DOX 24 hour distances of DAR-SNP pairs and non-DAR-SNP pairs")

Version Author Date
1429820 reneeisnowhere 2025-07-21
1a9df02 reneeisnowhere 2025-07-09
wilcox.test(distance ~ sig_24, data = peak_snp_pairs_dist)

    Wilcoxon rank sum test with continuity correction

data:  distance by sig_24
W = 9463083, p-value = 0.002185
alternative hypothesis: true location shift is not equal to 0
Cardiotox_gwas_df <- peak_snp_pairs_dist %>% 
  dplyr::filter(sig_24=="sig") %>% 
  group_by(TAD_id,RSID) %>% 
  slice_min(order_by = distance, with_ties = FALSE) %>%
  ungroup() %>% 
  arrange(snp_chr,snp_start) %>% 
  left_join(., all_results_pivot, by=c("Peakid"="genes")) %>% 
  tidyr::unite(., name,Peakid,RSID)


Cardiotox_gwas_collaped_df <-
peak_snp_pairs_dist %>% 
  dplyr::filter(sig_24=="sig") %>% 
  group_by(TAD_id,RSID) %>% 
  slice_min(order_by = distance, with_ties = FALSE) %>%
  ungroup() %>% 
  arrange(snp_chr,snp_start) %>% 
  group_by(Peakid, peak_chr, peak_start, TAD_id, sig_24) %>%
  summarise(
    min_distance = min(distance),
    mean_distance = mean(distance),
    snp_list = paste(unique(RSID), collapse = ","),
    .groups = "drop"
  ) %>% 
  left_join(., all_results_pivot, by=c("Peakid"="genes")) %>% 
  left_join(., Peak_gene_RNA_LFC, by=c("Peakid"="Peakid")) %>% 
  left_join(.,gene_info_collapsed, by=c("geneId"="ENTREZID")) %>% 
  mutate(SYMBOL=if_else(is.na(SYMBOL.x),SYMBOL.y,if_else(SYMBOL.x==SYMBOL.y, SYMBOL.x,paste0(SYMBOL.x,"_",SYMBOL.y)))) %>% 
  tidyr::unite(., name,Peakid,SYMBOL,snp_list) %>% 
  mutate(snp_dist=case_when(min_distance <2000 ~"2kb",
                            min_distance > 2000 & min_distance<20000 ~ "20kb",
                            min_distance >20000 ~">20kb"))
peak_snp_pairs_dist_DOX_3 <- peak_snp_pairs %>%
  mutate(distance = abs(peak_start - snp_start)) %>% 
  mutate(sig_3= if_else(Peakid %in% DOX_DAR_sig_3$Peakid, "sig","not_sig"))

peak_snp_pairs_dist_DOX_3 %>% 
  mutate(sig_3=factor(sig_3, levels= c("sig","not_sig"))) %>% 
  ggplot(., aes(x= sig_3, y=distance))+
  geom_boxplot()+
  theme_bw()+
  geom_signif(comparisons = list(c("sig", "not_sig")), 
              map_signif_level = FALSE, test = "wilcox.test")

Version Author Date
1429820 reneeisnowhere 2025-07-21
wilcox.test(distance ~ sig_3, data = peak_snp_pairs_dist_DOX_3)

    Wilcoxon rank sum test with continuity correction

data:  distance by sig_3
W = 837367, p-value = 0.0241
alternative hypothesis: true location shift is not equal to 0
Cardiotox_gwas_EPI <- peak_snp_pairs_dist_DOX_3 %>% 
  dplyr::filter(sig_3=="sig") %>% 
  group_by(TAD_id,RSID) %>% 
  slice_min(order_by = distance, with_ties = FALSE) %>%
  ungroup() %>% 
  arrange(snp_chr,snp_start) %>% 
  left_join(., all_results_pivot, by=c("Peakid"="genes")) %>% 
  tidyr::unite(., name,Peakid,RSID)

Looking at SNPs that directly overlap DARs

snp_peak_ol <- join_overlap_inner(all_regions_gr,schneider_gr)
  SNP_DAR_overlap_direct <- snp_peak_ol %>% 
    as.data.frame() %>% 
      mutate(Dox_24=if_else(Peakid %in% DOX_DAR_sig$Peakid,"yes","no")) %>% 
  mutate(Epi_24=if_else(Peakid %in% EPI_DAR_sig$Peakid,"yes","no")) %>% 
  mutate(Dnr_24=if_else(Peakid %in% DNR_DAR_sig$Peakid,"yes","no")) %>% 
  mutate(MTx_24=if_else(Peakid %in% MTX_DAR_sig$Peakid,"yes","no")) %>% 
    mutate(Dox_3=if_else(Peakid %in% DOX_DAR_sig_3$Peakid,"yes","no")) %>% 
  mutate(Epi_3=if_else(Peakid %in% EPI_DAR_sig_3$Peakid,"yes","no")) %>% 
  mutate(Dnr_3=if_else(Peakid %in% DNR_DAR_sig_3$Peakid,"yes","no")) %>% 
  mutate(Mtx_3=if_else(Peakid %in% MTX_DAR_sig_3$Peakid,"yes","no")) %>% 
    dplyr::select(Peakid,RSID,Dox_24:Mtx_3) 
  
  SNP_DAR_overlap_direct
                    Peakid       RSID Dox_24 Epi_24 Dnr_24 MTx_24 Dox_3 Epi_3
1  chr18.58336709.58336869 rs12051934    yes    yes    yes     no    no    no
2 chr2.176086015.176086512  rs6752623     no     no     no     no    no    no
3  chr22.46249819.46250733  rs7291763     no     no    yes     no    no    no
4 chr7.134834642.134835353  rs7777356     no    yes     no     no    no   yes
  Dnr_3 Mtx_3
1    no    no
2    no    no
3    no    no
4   yes    no

DOX_MCF7 added

bind_rows(MCF7_DAR_snp_pairs_dist,peak_snp_pairs_dist) %>% 
  mutate(sig_24=factor(sig_24, levels= c("sig","not_sig", "MCF7_DAR"))) %>% ggplot(., aes(x= sig_24, y=distance))+
  geom_boxplot()+
  theme_bw()+
  geom_signif(comparisons = list(c("sig", "not_sig"),
                                 c("sig","MCF7_DAR"),
                               c("not_sig","MCF7_DAR")),
              step_increase = 0.1, 
              map_signif_level = FALSE, 
              test = "wilcox.test")+
  ggtitle("DOX 24 hour distances of DAR-SNP pairs\n and non-DAR-SNP pairs with MCF7 DARs")

Version Author Date
1429820 reneeisnowhere 2025-07-21
1a9df02 reneeisnowhere 2025-07-09

EPI 24 hours

peak_snp_pairs_dist_EPI <- peak_snp_pairs %>%
  mutate(distance = abs(peak_start - snp_start)) %>% 
  mutate(sig_24= if_else(Peakid %in% EPI_DAR_sig$Peakid, "sig","not_sig"))

peak_snp_pairs_dist_EPI %>% 
  mutate(sig_24=factor(sig_24, levels= c("sig","not_sig"))) %>% 
  ggplot(., aes(x= sig_24, y=distance))+
  geom_boxplot()+
  theme_bw()+
  geom_signif(comparisons = list(c("sig", "not_sig")), 
              map_signif_level = FALSE, test = "wilcox.test")

Version Author Date
1a9df02 reneeisnowhere 2025-07-09
wilcox.test(distance ~ sig_24, data = peak_snp_pairs_dist)

    Wilcoxon rank sum test with continuity correction

data:  distance by sig_24
W = 9463083, p-value = 0.002185
alternative hypothesis: true location shift is not equal to 0
Cardiotox_gwas_EPI <- peak_snp_pairs_dist_EPI %>% 
  dplyr::filter(sig_24=="sig") %>% 
  group_by(TAD_id,RSID) %>% 
  slice_min(order_by = distance, with_ties = FALSE) %>%
  ungroup() %>% 
  arrange(snp_chr,snp_start) %>% 
  left_join(., all_results_pivot, by=c("Peakid"="genes")) %>% 
  tidyr::unite(., name,Peakid,RSID)

EPI_MCF7 added

bind_rows(MCF7_DAR_snp_pairs_dist,peak_snp_pairs_dist_EPI) %>% 
  mutate(sig_24=factor(sig_24, levels= c("sig","not_sig", "MCF7_DAR"))) %>% ggplot(., aes(x= sig_24, y=distance))+
  geom_boxplot()+
  theme_bw()+
  geom_signif(comparisons = list(c("sig", "not_sig"),
                                 c("sig","MCF7_DAR"),
                               c("not_sig","MCF7_DAR")),
              step_increase = 0.1, 
              map_signif_level = FALSE, 
              test = "wilcox.test")+
  ggtitle("EPI 24 hour distances of DAR-SNP pairs\n and non-DAR-SNP pairs with MCF7 DARs")

Version Author Date
1429820 reneeisnowhere 2025-07-21
1a9df02 reneeisnowhere 2025-07-09
peak_snp_pairs_dist_EPI_3 <- peak_snp_pairs %>%
  mutate(distance = abs(peak_start - snp_start)) %>% 
  mutate(sig_3= if_else(Peakid %in% EPI_DAR_sig_3$Peakid, "sig","not_sig"))

peak_snp_pairs_dist_EPI_3 %>% 
  mutate(sig_3=factor(sig_3, levels= c("sig","not_sig"))) %>% 
  ggplot(., aes(x= sig_3, y=distance))+
  geom_boxplot()+
  theme_bw()+
  geom_signif(comparisons = list(c("sig", "not_sig")), 
              map_signif_level = FALSE, test = "wilcox.test")

Version Author Date
1429820 reneeisnowhere 2025-07-21
wilcox.test(distance ~ sig_3, data = peak_snp_pairs_dist_EPI_3)

    Wilcoxon rank sum test with continuity correction

data:  distance by sig_3
W = 3249493, p-value = 3.114e-05
alternative hypothesis: true location shift is not equal to 0
Cardiotox_gwas_EPI_3 <- peak_snp_pairs_dist_EPI_3 %>% 
  dplyr::filter(sig_3=="sig") %>% 
  group_by(TAD_id,RSID) %>% 
  slice_min(order_by = distance, with_ties = FALSE) %>%
  ungroup() %>% 
  arrange(snp_chr,snp_start) %>% 
  left_join(., all_results_pivot, by=c("Peakid"="genes")) %>% 
  tidyr::unite(., name,Peakid,RSID)

DNR 24 hours

peak_snp_pairs_dist_DNR <- peak_snp_pairs %>%
  mutate(distance = abs(peak_start - snp_start)) %>% 
  mutate(sig_24= if_else(Peakid %in% DNR_DAR_sig$Peakid, "sig","not_sig"))

peak_snp_pairs_dist_DNR %>% 
  mutate(sig_24=factor(sig_24, levels= c("sig","not_sig"))) %>% 
  ggplot(., aes(x= sig_24, y=distance))+
  geom_boxplot()+
  theme_bw()+
  geom_signif(comparisons = list(c("sig", "not_sig")), 
              map_signif_level = FALSE, test = "wilcox.test")+
  ggtitle("DNR 24 hour distances of DAR-SNP pairs and non-DAR-SNP pairs")

Version Author Date
1a9df02 reneeisnowhere 2025-07-09
wilcox.test(distance ~ sig_24, data = peak_snp_pairs_dist)

    Wilcoxon rank sum test with continuity correction

data:  distance by sig_24
W = 9463083, p-value = 0.002185
alternative hypothesis: true location shift is not equal to 0
Cardiotox_gwas_DNR <- peak_snp_pairs_dist_DNR %>% 
  dplyr::filter(sig_24=="sig") %>% 
  group_by(TAD_id,RSID) %>% 
  slice_min(order_by = distance, with_ties = FALSE) %>%
  ungroup() %>% 
  arrange(snp_chr,snp_start) %>% 
  left_join(., all_results_pivot, by=c("Peakid"="genes")) %>% 
  tidyr::unite(., name,Peakid,RSID)

DNR_MCF7 added

bind_rows(MCF7_DAR_snp_pairs_dist,peak_snp_pairs_dist_DNR) %>% 
  mutate(sig_24=factor(sig_24, levels= c("sig","not_sig", "MCF7_DAR"))) %>% ggplot(., aes(x= sig_24, y=distance))+
  geom_boxplot()+
  theme_bw()+
  geom_signif(comparisons = list(c("sig", "not_sig"),
                                 c("sig","MCF7_DAR"),
                               c("not_sig","MCF7_DAR")),
              step_increase = 0.1, 
              map_signif_level = FALSE, 
              test = "wilcox.test")+
  ggtitle("DNR 24 hour distances of DAR-SNP pairs\n and non-DAR-SNP pairs with MCF7 DARs")

Version Author Date
1429820 reneeisnowhere 2025-07-21
1a9df02 reneeisnowhere 2025-07-09
peak_snp_pairs_dist_DNR_3 <- peak_snp_pairs %>%
  mutate(distance = abs(peak_start - snp_start)) %>% 
  mutate(sig_3= if_else(Peakid %in% DNR_DAR_sig_3$Peakid, "sig","not_sig"))

peak_snp_pairs_dist_DNR_3 %>% 
  mutate(sig_3=factor(sig_3, levels= c("sig","not_sig"))) %>% 
  ggplot(., aes(x= sig_3, y=distance))+
  geom_boxplot()+
  theme_bw()+
  geom_signif(comparisons = list(c("sig", "not_sig")), 
              map_signif_level = FALSE, test = "wilcox.test")+
  ggtitle("3 hour DNR")

Version Author Date
1429820 reneeisnowhere 2025-07-21
wilcox.test(distance ~ sig_3, data = peak_snp_pairs_dist_DNR_3)

    Wilcoxon rank sum test with continuity correction

data:  distance by sig_3
W = 4576878, p-value = 0.02023
alternative hypothesis: true location shift is not equal to 0
Cardiotox_gwas_DNR_3 <- peak_snp_pairs_dist_DNR_3 %>% 
  dplyr::filter(sig_3=="sig") %>% 
  group_by(TAD_id,RSID) %>% 
  slice_min(order_by = distance, with_ties = FALSE) %>%
  ungroup() %>% 
  arrange(snp_chr,snp_start) %>% 
  left_join(., all_results_pivot, by=c("Peakid"="genes")) %>% 
  tidyr::unite(., name,Peakid,RSID)

MTX 24 hours

peak_snp_pairs_dist_MTX <- peak_snp_pairs %>%
  mutate(distance = abs(peak_start - snp_start)) %>% 
  mutate(sig_24= if_else(Peakid %in% MTX_DAR_sig$Peakid, "sig","not_sig"))

peak_snp_pairs_dist_MTX %>% 
  mutate(sig_24=factor(sig_24, levels= c("sig","not_sig"))) %>% 
  ggplot(., aes(x= sig_24, y=distance))+
  geom_boxplot()+
  theme_bw()+
  geom_signif(comparisons = list(c("sig", "not_sig")), 
              map_signif_level = FALSE, test = "wilcox.test")+
  ggtitle("MTX 24 hour distances of DAR-SNP pairs and non-DAR-SNP pairs")

Version Author Date
1a9df02 reneeisnowhere 2025-07-09
wilcox.test(distance ~ sig_24, data = peak_snp_pairs_dist)

    Wilcoxon rank sum test with continuity correction

data:  distance by sig_24
W = 9463083, p-value = 0.002185
alternative hypothesis: true location shift is not equal to 0
Cardiotox_gwas_MTX <- peak_snp_pairs_dist_MTX %>% 
  dplyr::filter(sig_24=="sig") %>% 
  group_by(TAD_id,RSID) %>% 
  slice_min(order_by = distance, with_ties = FALSE) %>%
  ungroup() %>% 
  arrange(snp_chr,snp_start) %>% 
  left_join(., all_results_pivot, by=c("Peakid"="genes")) %>% 
  tidyr::unite(., name,Peakid,RSID)

MTX_MCF7 added

bind_rows(MCF7_DAR_snp_pairs_dist,peak_snp_pairs_dist_MTX) %>% 
  mutate(sig_24=factor(sig_24, levels= c("sig","not_sig", "MCF7_DAR"))) %>% ggplot(., aes(x= sig_24, y=distance))+
  geom_boxplot()+
  theme_bw()+
  geom_signif(comparisons = list(c("sig", "not_sig"),
                                 c("sig","MCF7_DAR"),
                               c("not_sig","MCF7_DAR")),
              step_increase = 0.1, 
              map_signif_level = FALSE, 
              test = "wilcox.test")+
  ggtitle("MTX 24 hour distances of DAR-SNP pairs\n and non-DAR-SNP pairs with MCF7 DARs")

Version Author Date
1429820 reneeisnowhere 2025-07-21
1a9df02 reneeisnowhere 2025-07-09
peak_snp_pairs_dist_MTX_3 <- peak_snp_pairs %>%
  mutate(distance = abs(peak_start - snp_start)) %>% 
  mutate(sig_3= if_else(Peakid %in% MTX_DAR_sig_3$Peakid, "sig","not_sig"))

peak_snp_pairs_dist_MTX_3 %>% 
  mutate(sig_3=factor(sig_3, levels= c("sig","not_sig"))) %>% 
  ggplot(., aes(x= sig_3, y=distance))+
  geom_boxplot()+
  theme_bw()+
  geom_signif(comparisons = list(c("sig", "not_sig")), 
              map_signif_level = FALSE, test = "wilcox.test")+
  ggtitle("3 hour MTX")

Version Author Date
1429820 reneeisnowhere 2025-07-21
wilcox.test(distance ~ sig_3, data = peak_snp_pairs_dist_MTX_3)

    Wilcoxon rank sum test with continuity correction

data:  distance by sig_3
W = 219052, p-value = 0.5511
alternative hypothesis: true location shift is not equal to 0
Cardiotox_gwas_MTX_3 <- peak_snp_pairs_dist_MTX_3 %>% 
  dplyr::filter(sig_3=="sig") %>% 
  group_by(TAD_id,RSID) %>% 
  slice_min(order_by = distance, with_ties = FALSE) %>%
  ungroup() %>% 
  arrange(snp_chr,snp_start) %>% 
  left_join(., all_results_pivot, by=c("Peakid"="genes")) %>% 
  tidyr::unite(., name,Peakid,RSID)

Creating SNP_TAD distance DF

For combining the above 24 hour trt-distance to SNP data frames for box-plots

drug_pal <- c("#8B006D","#DF707E","#F1B72B", "#3386DD","#707031","#41B333")
SNP_TAD_dist_DF <- bind_rows((peak_snp_pairs_dist_MTX %>% 
             mutate(trt="MTX")),
          (peak_snp_pairs_dist %>%
               mutate(trt="DOX"))) %>% 
  bind_rows(.,(peak_snp_pairs_dist_EPI %>% 
                 mutate(trt="EPI"))) %>% 
  bind_rows(.,(peak_snp_pairs_dist_DNR %>% 
                 mutate(trt="DNR"))) %>% 
  mutate(trt=factor(trt,levels=c("DOX","EPI","DNR","MTX"))) %>% 
   mutate(sig_24=factor(sig_24, levels= c("sig","not_sig"))) 

SNP_TAD_dist_DF%>% 
  ggplot(., aes(x= interaction(sig_24,trt), y=distance))+
  geom_boxplot(aes(fill=trt))+
  theme_bw()+
  geom_signif(comparisons = list(c("sig.DOX", "not_sig.DOX"),
                                 c("sig.EPI","not_sig.EPI"),
                                 c("sig.DNR", "not_sig.DNR"),
                                 c("sig.MTX", "not_sig.MTX")),
                              # step_increase = 0.1, 
              map_signif_level = FALSE, 
              test = "wilcox.test")+
  ggtitle("ALL dist 24 hours")+
  scale_fill_manual(values=drug_pal)

Version Author Date
b1638d9 reneeisnowhere 2025-07-29
1429820 reneeisnowhere 2025-07-21
1a9df02 reneeisnowhere 2025-07-09
SNP_TAD_dist_DF_3 <- bind_rows((peak_snp_pairs_dist_MTX_3 %>% 
             mutate(trt="MTX")),
          (peak_snp_pairs_dist_DOX_3 %>%
               mutate(trt="DOX"))) %>% 
  bind_rows(.,(peak_snp_pairs_dist_EPI_3 %>% 
                 mutate(trt="EPI"))) %>% 
  bind_rows(.,(peak_snp_pairs_dist_DNR_3 %>% 
                 mutate(trt="DNR"))) %>% 
  mutate(trt=factor(trt,levels=c("DOX","EPI","DNR","MTX"))) %>% 
   mutate(sig_3=factor(sig_3, levels= c("sig","not_sig"))) 

SNP_TAD_dist_DF_3%>% 
  ggplot(., aes(x= interaction(sig_3,trt), y=distance))+
  geom_boxplot(aes(fill=trt))+
  theme_bw()+
  geom_signif(comparisons = list(c("sig.DOX", "not_sig.DOX"),
                                 c("sig.EPI","not_sig.EPI"),
                                 c("sig.DNR", "not_sig.DNR"),
                                 c("sig.MTX", "not_sig.MTX")),
                              # step_increase = 0.1, 
              map_signif_level = FALSE, 
              test = "wilcox.test")+
  ggtitle("ALL dist 3 hours")+
  scale_fill_manual(values=drug_pal)

Version Author Date
b1638d9 reneeisnowhere 2025-07-29
1429820 reneeisnowhere 2025-07-21

MCF7 tissue specific, non-tissue specific.

Here I am overlapping my data with the MCF7 DAR data. This will create DARS for each treatment that overlap MCF7 DARS (tissue-shared regions) and DARS that do not overlap MCF7 DARS (tissue-specific regions). I will then calculate the distance between the SNPs in the shared vs specific for each treatment.

MCF7_DARs_hyper <- read_excel("C:/Users/renee/Downloads/MCF7-doxATAC/Table 4.XLSX", 
    sheet = "hyper") %>% GRanges()
MCF7_DARs_hypo <- read_excel("C:/Users/renee/Downloads/MCF7-doxATAC/Table 4.XLSX", 
    sheet = "hypo") %>% GRanges()

# MCF7_ARsmcf7_1 <- read_excel("C:/Users/renee/Downloads/MCF7-doxATAC/Table 3.XLSX") %>% 
#   GRanges()
  MCF7_DARs_hyper$names <- paste0("hyper_", seq_along(seqnames(MCF7_DARs_hyper)))
 MCF7_DARs_hypo$names <- paste0("hypo_", seq_along(seqnames(MCF7_DARs_hypo)))
 
 MCF7_DAR_all <- c(MCF7_DARs_hyper,MCF7_DARs_hypo)
 
 ch = import.chain("C:/Users/renee/ATAC_folder/liftOver_genome/hg19ToHg38.over.chain")
# MCF7_ARsmcf7_1_LO <- as.data.frame(liftOver(MCF7_ARsmcf7_1,ch)) %>% 
#   GRanges()

MCF7_DARs_hyper_LO <- as.data.frame(liftOver(MCF7_DARs_hyper,ch)) %>% 
  GRanges()

MCF7_DARs_hypo_LO <- as.data.frame(liftOver(MCF7_DARs_hypo,ch)) %>% 
  GRanges()

MCF7_DAR_all_LO <- c(MCF7_DARs_hyper_LO,MCF7_DARs_hypo_LO)

MCF7DAR_AR_ol <- join_overlap_intersect(all_regions_gr, MCF7_DAR_all_LO)

DAR_AR_overlap_df <-MCF7DAR_AR_ol %>% 
  as.data.frame() %>% 
  distinct(Peakid)

Attempting with DOX

peak_snp_pairs_dist %>% 
  dplyr::filter(sig_24 =="sig") %>% 
  mutate(specific=if_else(Peakid %in%DAR_AR_overlap_df$Peakid,"specific","not_specific")) %>% 
  mutate(specific=factor(specific,levels= c("specific","not_specific"))) %>% 
  ggplot(.,aes(x=specific, y=distance))+
  geom_boxplot()+
  theme_bw()+
  geom_signif(comparisons = list(c("specific", "not_specific")),
              step_increase = 0.1,
              map_signif_level = FALSE,
              test = "wilcox.test")+
  ggtitle("DOX 24 hour distances of DAR-SNP pairs\n that are specific for iPSC-CMs or not-specific")

Version Author Date
1429820 reneeisnowhere 2025-07-21
peak_snp_pairs_dist_EPI %>% 
  dplyr::filter(sig_24 =="sig") %>% 
  mutate(specific=if_else(Peakid %in%DAR_AR_overlap_df$Peakid,"specific","not_specific")) %>% 
  mutate(specific=factor(specific,levels= c("specific","not_specific"))) %>% 
  ggplot(.,aes(x=specific, y=distance))+
  geom_boxplot()+
  theme_bw()+
  geom_signif(comparisons = list(c("specific", "not_specific")),
              step_increase = 0.1,
              map_signif_level = FALSE,
              test = "wilcox.test")+
  ggtitle("EPI 24 hour distances of DAR-SNP pairs\n that are specific for iPSC-CMs or not-specific")

Version Author Date
1429820 reneeisnowhere 2025-07-21
peak_snp_pairs_dist_DNR %>% 
  dplyr::filter(sig_24 =="sig") %>% 
  mutate(specific=if_else(Peakid %in%DAR_AR_overlap_df$Peakid,"specific","not_specific")) %>% 
  mutate(specific=factor(specific,levels= c("specific","not_specific"))) %>% 
  ggplot(.,aes(x=specific, y=distance))+
  geom_boxplot()+
  theme_bw()+
  geom_signif(comparisons = list(c("specific", "not_specific")),
              step_increase = 0.1,
              map_signif_level = FALSE,
              test = "wilcox.test")+
  ggtitle("DNR 24 hour distances of DAR-SNP pairs\n that are specific for iPSC-CMs or not-specific")

Version Author Date
1429820 reneeisnowhere 2025-07-21
peak_snp_pairs_dist_MTX %>% 
  dplyr::filter(sig_24 =="sig") %>% 
  mutate(specific=if_else(Peakid %in%DAR_AR_overlap_df$Peakid,"specific","not_specific")) %>% 
  mutate(specific=factor(specific,levels= c("specific","not_specific"))) %>% 
  ggplot(.,aes(x=specific, y=distance))+
  geom_boxplot()+
  theme_bw()+
  geom_signif(comparisons = list(c("specific", "not_specific")),
              step_increase = 0.1,
              map_signif_level = FALSE,
              test = "wilcox.test")+
  ggtitle("MTX 24 hour distances of DAR-SNP pairs\n that are specific for iPSC-CMs or not-specific")

Version Author Date
1429820 reneeisnowhere 2025-07-21
peak_snp_pairs_dist %>% 
  dplyr::filter(!Peakid %in% DAR_AR_overlap_df$Peakid) %>% 
  mutate(sig_24=factor(sig_24,levels = c ("sig","not_sig"))) %>%
  ggplot(.,aes(x=sig_24, y=distance))+
  geom_boxplot()+
  theme_bw()+
  geom_signif(comparisons = list(c("sig", "not_sig")),
              step_increase = 0.1,
              map_signif_level = FALSE,
              test = "wilcox.test")+
  ggtitle("DOX 24 hour distances of DAR-SNP pairs\n that are specific for iPSC-CMs")

Version Author Date
1429820 reneeisnowhere 2025-07-21
peak_snp_pairs_dist_EPI %>% 
  dplyr::filter(!Peakid %in% DAR_AR_overlap_df$Peakid) %>% 
  mutate(sig_24=factor(sig_24,levels = c ("sig","not_sig"))) %>%
  ggplot(.,aes(x=sig_24, y=distance))+
  geom_boxplot()+
  theme_bw()+
  geom_signif(comparisons = list(c("sig", "not_sig")),
              step_increase = 0.1,
              map_signif_level = FALSE,
              test = "wilcox.test")+
  ggtitle("EPI 24 hour distances of DAR-SNP pairs\n that are specific for iPSC-CMs")

Version Author Date
1429820 reneeisnowhere 2025-07-21
peak_snp_pairs_dist_DNR %>% 
  dplyr::filter(!Peakid %in% DAR_AR_overlap_df$Peakid) %>% 
  mutate(sig_24=factor(sig_24,levels = c ("sig","not_sig"))) %>%
  ggplot(.,aes(x=sig_24, y=distance))+
  geom_boxplot()+
  theme_bw()+
  geom_signif(comparisons = list(c("sig", "not_sig")),
              step_increase = 0.1,
              map_signif_level = FALSE,
              test = "wilcox.test")+
  ggtitle("DNR 24 hour distances of DAR-SNP pairs\n that are specific for iPSC-CMs")

Version Author Date
1429820 reneeisnowhere 2025-07-21
peak_snp_pairs_dist_MTX %>% 
  dplyr::filter(!Peakid %in% DAR_AR_overlap_df$Peakid) %>% 
  mutate(sig_24=factor(sig_24,levels = c ("sig","not_sig"))) %>%
  ggplot(.,aes(x=sig_24, y=distance))+
  geom_boxplot()+
  theme_bw()+
  geom_signif(comparisons = list(c("sig", "not_sig")),
              step_increase = 0.1,
              map_signif_level = FALSE,
              test = "wilcox.test")+
  ggtitle("MTX 24 hour distances of DAR-SNP pairs\n that are specific for iPSC-CMs")

Version Author Date
1429820 reneeisnowhere 2025-07-21

Attempt at heatmap with RNA expression, decided not to use or plot here.

Cardotox_mat <-   Cardiotox_gwas_collaped_df %>%
  dplyr::select(name,DOX_3:TRZ_24,`3_RNA_DOX`,`3_RNA_EPI`,`3_RNA_DNR`,`3_RNA_MTX`,`3_RNA_TRZ`,`24_RNA_DOX`,`24_RNA_EPI`,`24_RNA_DNR`,`24_RNA_MTX`,`24_RNA_TRZ`) %>% 
  column_to_rownames("name") %>% 
  as.matrix()

annot_map_df <- Cardiotox_gwas_collaped_df %>% 
  dplyr::select(name,snp_dist) %>% 
  column_to_rownames("name") 
annot_map <-
  rowAnnotation(
    snp_dist=Cardiotox_gwas_collaped_df$snp_dist,
    TAD_id=Cardiotox_gwas_collaped_df$TAD_id,
    col= list(snp_dist=c("2kb"="goldenrod4",
                               "20kb"="pink",
                               ">20kb"="tan2"),
    TAD_id=tad_colors))




simply_map_lfc <- ComplexHeatmap::Heatmap(Cardotox_mat,
                        #                   col = col_fun,
                        left_annotation = annot_map,
                        show_row_names = TRUE,
                       row_names_max_width= ComplexHeatmap::max_text_width(rownames(Cardotox_mat),                                                        gp=gpar(fontsize=14)),
                        heatmap_legend_param = list(direction = "horizontal"),
                        show_column_names = TRUE,
                        cluster_rows = FALSE,
                        cluster_columns = FALSE)




ComplexHeatmap::draw(simply_map_lfc, 
     merge_legend = TRUE, 
     heatmap_legend_side = "left", 
    annotation_legend_side = "left")

Alternative of final graph

ATAC_all_adj.pvals <- all_results%>%
dplyr::select(source,genes,adj.P.Val) %>%
    pivot_wider(id_cols=genes, values_from = adj.P.Val, names_from = source)
# saveRDS(ATAC_all_adj.pvals,"data/Final_four_data/re_analysis/ATAC_all_adj_pvals.RDS")
sig_mat_cardiotox <- ATAC_all_adj.pvals %>%
  dplyr::filter(genes %in% peak_snp_pairs_dist$Peakid) %>% 
  left_join(peak_snp_pairs_dist, by=c("genes"="Peakid")) %>% 
  group_by(TAD_id,RSID) %>% 
  slice_min(order_by = distance, with_ties = FALSE) %>%
  ungroup() %>% 
  arrange(snp_chr,snp_start) %>% 
   group_by(genes, peak_chr, peak_start, TAD_id, sig_24) %>%
  summarise(
    min_distance = min(distance),
    mean_distance = mean(distance),
    snp_list = paste(unique(RSID), collapse = ","),
    .groups = "drop"
  ) %>% 
  left_join(ATAC_all_adj.pvals) %>% 
  tidyr::unite(., name,genes,snp_list) %>% 
  dplyr::select(name, DNR_3:TRZ_24) %>% 
  column_to_rownames("name") %>% 
  as.matrix()

AR_Cardiotox_gwas_collaped_df <-
peak_snp_pairs_dist %>% 
  # dplyr::filter(sig_24=="sig") %>% 
  group_by(TAD_id,RSID) %>% 
  slice_min(order_by = distance, with_ties = FALSE) %>%
  ungroup() %>% 
  arrange(snp_chr,snp_start) %>% 
  group_by(Peakid, peak_chr, peak_start, TAD_id, sig_24) %>%
  summarise(
    min_distance = min(distance),
    mean_distance = mean(distance),
    snp_list = paste(unique(RSID), collapse = ","),
    .groups = "drop"
  ) %>% 
  left_join(., all_results_pivot, by=c("Peakid"="genes")) %>% 
  tidyr::unite(., name,Peakid,snp_list) %>%
  mutate(snp_dist=case_when(min_distance <2000 ~"2kb",
                            min_distance > 2000 & min_distance<20000 ~ "20kb",
                            min_distance >20000 ~">20kb"))


Cardotox_mat_2 <-   AR_Cardiotox_gwas_collaped_df %>%
  dplyr::select(name,DOX_3:TRZ_24) %>% 
  column_to_rownames("name") %>% 
  as.matrix()

annot_map_df_2 <- AR_Cardiotox_gwas_collaped_df %>% 
  dplyr::select(name,snp_dist,sig_24) %>% 
  column_to_rownames("name") 
annot_map_2 <-
  ComplexHeatmap::rowAnnotation(
    snp_dist=AR_Cardiotox_gwas_collaped_df$snp_dist,
    TAD_id=AR_Cardiotox_gwas_collaped_df$TAD_id,
    DOX_24hr_DAR=AR_Cardiotox_gwas_collaped_df$sig_24,
    col= list(snp_dist=c("2kb"="goldenrod4",
                               "20kb"="pink",
                               ">20kb"="tan2"),
              TAD_id=tad_colors))
# all.equal(rownames(sig_mat_cardiotox), rownames(Cardotox_mat_2))
# all.equal(colnames(sig_mat_cardiotox), colnames(Cardotox_mat_2))
# 
# setdiff(colnames(sig_mat_cardiotox), colnames(Cardotox_mat_2))
# setdiff(colnames(Cardotox_mat_2), colnames(sig_mat_cardiotox))
# 
# intersect(colnames(sig_mat_cardiotox), colnames(Cardotox_mat_2))
# setdiff(colnames(sig_mat_cardiotox), colnames(Cardotox_mat_2))
# setdiff(colnames(Cardotox_mat_2), colnames(sig_mat_cardiotox))

simply_map_lfc_2 <- ComplexHeatmap::Heatmap(Cardotox_mat_2,
                        left_annotation = annot_map_2,
                        show_row_names = TRUE,
                       row_names_max_width= ComplexHeatmap::max_text_width(rownames(Cardotox_mat_2),                                                        gp=gpar(fontsize=14)),
                        heatmap_legend_param = list(direction = "horizontal"),
                       
                        show_column_names = TRUE,
                        cluster_rows = FALSE,
                        cluster_columns = FALSE,
                        cell_fun = function(j, i, x, y, width, height, fill) {
  rowname <- rownames(Cardotox_mat_2)[i]
  colname <- colnames(Cardotox_mat_2)[j]
  if (!is.na(sig_mat_cardiotox[rowname, colname]) &&
      sig_mat_cardiotox[rowname, colname] < 0.05) {
    grid.text("*", x, y, gp = gpar(fontsize = 20))
  }
})




ComplexHeatmap::draw(simply_map_lfc_2, 
     merge_legend = TRUE, 
     heatmap_legend_side = "left", 
    annotation_legend_side = "left")

Version Author Date
b1638d9 reneeisnowhere 2025-07-29

adding in Park data:

ParkSNPs <- readRDS("data/other_papers/ParkSNPs_pull_VEF.RDS")

ParkSNP_table <-
  ParkSNPs %>% 
  dplyr::select(1:2) %>% 
    distinct() %>% 
    separate_wider_delim(.,Location,delim=":",names=c("chr","position"), cols_remove=FALSE) %>% 
    separate_wider_delim(.,position,delim="-",names=c("begin","term")) %>%
    mutate(chr=paste0("chr",chr)) 

ParkSNP_gr <- ParkSNP_table %>% 
  mutate("start" = begin, "end"=term) %>% 
    GRanges()

Park_snp_tad_df <-  join_overlap_inner(ParkSNP_gr, Left_ventricle_TAD) %>%
  as_tibble() %>%
    dplyr::rename("RSID"=X.Uploaded_variation) %>% 
  dplyr::select(RSID, snp_start = start, snp_chr = seqnames, TAD_id)

Park_snp_pairs <- peak_tad_df %>%
  inner_join(Park_snp_tad_df, by = "TAD_id")

Park_snp_pairs %>% 
  distinct(RSID)

Park_snp_pairs_dist <- Park_snp_pairs %>%
  mutate(distance = abs(peak_start - snp_start)) %>% 
  mutate(sig_24= if_else(Peakid %in% DOX_DAR_sig$Peakid, "sig","not_sig"))

Park_snp_pairs_dist %>% 
  mutate(sig_24=factor(sig_24, levels= c("sig","not_sig"))) %>% 
  ggplot(., aes(x= sig_24, y=distance))+
  geom_boxplot()+
  theme_bw()+
  geom_signif(comparisons = list(c("sig", "not_sig")), 
              map_signif_level = FALSE, test = "wilcox.test")

wilcox.test(distance ~ sig_24, data = Park_snp_pairs_dist)

Park_Cardiotox_gwas_df <- Park_snp_pairs_dist %>% 
  dplyr::filter(sig_24=="sig") %>% 
  group_by(TAD_id,RSID) %>% 
  slice_min(order_by = distance, with_ties = FALSE) %>%
  ungroup() %>% 
  arrange(snp_chr,snp_start) %>% 
  left_join(., all_results_pivot, by=c("Peakid"="genes")) %>% 
  tidyr::unite(., name,Peakid,RSID)
Park_Cardiotox_gwas_collaped_df <-
Park_snp_pairs_dist %>% 
  # dplyr::filter(sig_24=="sig") %>% 
  group_by(TAD_id,RSID) %>% 
  slice_min(order_by = distance, with_ties = FALSE) %>%
  ungroup() %>% 
  arrange(snp_chr,snp_start) %>% 
  group_by(Peakid, peak_chr, peak_start, TAD_id, sig_24) %>%
  summarise(
    min_distance = min(distance),
    mean_distance = mean(distance),
    snp_list = paste(unique(RSID), collapse = ","),
    .groups = "drop"
  ) %>% 
  left_join(., all_results_pivot, by=c("Peakid"="genes")) %>% 
  # left_join(., Peak_gene_RNA_LFC, by=c("Peakid"="Peakid")) %>%
  # left_join(.,gene_info_collapsed, by=c("geneId"="ENTREZID")) %>% 
  # mutate(SYMBOL=if_else(is.na(SYMBOL.x),SYMBOL.y,if_else(SYMBOL.x==SYMBOL.y, SYMBOL.x,paste0(SYMBOL.x,"_",SYMBOL.y)))) %>% 
  tidyr::unite(., name,Peakid,snp_list) %>%
  mutate(snp_dist=case_when(min_distance <2000 ~"2kb",
                            min_distance > 2000 & min_distance<20000 ~ "20kb",
                            min_distance >20000 ~">20kb"))


Cardotox_mat_park <-   Park_Cardiotox_gwas_collaped_df %>%
  dplyr::select(name,DOX_3:TRZ_24) %>% 
  column_to_rownames("name") %>% 
  as.matrix()

annot_map_df_park <- Park_Cardiotox_gwas_collaped_df %>% 
  dplyr::select(name,snp_dist,sig_24) %>% 
  column_to_rownames("name") 
annot_map_park <-
  ComplexHeatmap::rowAnnotation(
    snp_dist=Park_Cardiotox_gwas_collaped_df$snp_dist,
    TAD_id=Park_Cardiotox_gwas_collaped_df$TAD_id,
    DOX_24hr_DAR=Park_Cardiotox_gwas_collaped_df$sig_24,
    col= list(snp_dist=c("2kb"="goldenrod4",
                               "20kb"="pink",
                               ">20kb"="tan2")))

simply_map_lfc_park <- ComplexHeatmap::Heatmap(Cardotox_mat_park,
                        #                   col = col_fun,
                        left_annotation = annot_map_park,
                        show_row_names = TRUE,
                       row_names_max_width= ComplexHeatmap::max_text_width(rownames(Cardotox_mat_park),                                                        gp=gpar(fontsize=14)),
                        heatmap_legend_param = list(direction = "horizontal"),
                        show_column_names = TRUE,
                        cluster_rows = FALSE,
                        cluster_columns = FALSE)




ComplexHeatmap::draw(simply_map_lfc_park, 
     merge_legend = TRUE, 
     heatmap_legend_side = "left", 
    annotation_legend_side = "left")

Accessibility changes of SNP- directly overlapping DARs

drug_pal <- c("#8B006D","#DF707E","#F1B72B", "#3386DD","#707031","#41B333")
raw_counts <- read_delim("data/Final_four_data/re_analysis/Raw_unfiltered_counts.tsv",delim="\t") %>% 
  column_to_rownames("Peakid") %>% 
  as.matrix()

lcpm <- cpm(raw_counts, log= TRUE)
  ### for determining the basic cutoffs
filt_raw_counts <- raw_counts[rowMeans(lcpm)> 0,]

filt_raw_counts_noY <- filt_raw_counts[!grepl("chrY",rownames(filt_raw_counts)),]

ATAC_adj.pvals <-all_results %>%
dplyr::select(source,genes,adj.P.Val) %>%
    dplyr::filter(genes %in% SNP_DAR_overlap_direct$Peakid) %>%
    separate(source, into = c("trt", "time")) %>% 
    mutate(
    time = paste0(time, "h"),  # convert "3" → "3h"
    trt = factor(trt, levels = c("DOX", "EPI", "DNR", "MTX", "TRZ")),
    group=paste0(trt,"_",time)) %>% 
  mutate(group=factor(group,levels = c("DOX_3h", "EPI_3h", "DNR_3h", "MTX_3h", "TRZ_3h", "VEH_3h",
        "DOX_24h", "EPI_24h", "DNR_24h", "MTX_24h", "TRZ_24h", "VEH_24h"))) %>% 
  dplyr::rename("Peakid"=genes)
ATAC_counts_lcpm <- filt_raw_counts_noY %>%
  cpm(., log = TRUE) %>% 
  as.data.frame() %>% 
  rownames_to_column("Peakid")
for (peak in SNP_DAR_overlap_direct$Peakid) {
  PEAK <- SNP_DAR_overlap_direct$Peakid[SNP_DAR_overlap_direct$Peakid == peak]

  # Prep expression data
  peak_expr <- ATAC_counts_lcpm %>%
    filter(Peakid == peak) %>%
    pivot_longer(cols = !Peakid, names_to = "sample", values_to = "lcpm") %>%
    separate(sample, into = c("ind", "trt", "time")) %>%
    mutate(
      time = paste0(time),  # if already "3h"/"24h"
      group = paste0(trt, "_", time),
      group = factor(group, levels = c(
        "DOX_3h", "EPI_3h", "DNR_3h", "MTX_3h", "TRZ_3h", "VEH_3h",
        "DOX_24h", "EPI_24h", "DNR_24h", "MTX_24h", "TRZ_24h", "VEH_24h"
      ))
    )

  # Get peak-specific p-values
  peak_pvals <- ATAC_adj.pvals %>%
    filter(Peakid==peak)

  # Merge in p-values by group
  peak_plot_data <- left_join(peak_expr, peak_pvals, by = c("Peakid", "group", "time"))

  # Create label position below box
  label_positions <- peak_plot_data %>%
    group_by(group) %>%
    summarise(y = min(lcpm, na.rm = TRUE) - 0.5, .groups = "drop")

  peak_plot_data <- left_join(peak_plot_data, label_positions, by = "group")
  peak_plot_data <- peak_plot_data %>%
  separate(group, into = c("trt", "time"), sep = "_", remove = FALSE)

  # Plot
  peak_plot <- ggplot(peak_plot_data, aes(x = group, y = lcpm)) +
    geom_boxplot(aes(fill = trt)) +
    geom_text(
      aes(y = y,
          label = ifelse(trt != "VEH" & !is.na(adj.P.Val),
                         paste0("", signif(adj.P.Val, 2)),
                         "")),
      size = 3,
      vjust = 1.2
    ) +
    scale_fill_manual(values = drug_pal) +
    theme_bw() +
    ggtitle(paste0("ATAC Log2cpm of ", PEAK)) +
    ylab("log2 cpm ATAC") +
    theme(axis.text.x = element_text(angle = 45, hjust = 1))

plot(peak_plot)
}

Version Author Date
b1638d9 reneeisnowhere 2025-07-29
1429820 reneeisnowhere 2025-07-21

Version Author Date
b1638d9 reneeisnowhere 2025-07-29
1429820 reneeisnowhere 2025-07-21

Version Author Date
b1638d9 reneeisnowhere 2025-07-29
1429820 reneeisnowhere 2025-07-21

Version Author Date
b1638d9 reneeisnowhere 2025-07-29
1429820 reneeisnowhere 2025-07-21
# for (peak in SNP_DAR_overlap_direct$Peakid) {
#   PEAK <- SNP_DAR_overlap_direct$Peakid[SNP_DAR_overlap_direct$Peakid == peak]
#  
# 
#   # Filter and plot
#   gene_plot <- ATAC_counts_lcpm  %>%
#     filter(Peakid == peak) %>%
#     pivot_longer(cols = !Peakid, names_to = "sample", values_to = "lcpm") %>%
#     separate(sample, into = c("trt", "ind", "time")) %>%
#     mutate(
#       time = factor(time, levels = c("3h", "24h")),
#       trt = factor(trt, levels = c("DOX", "EPI", "DNR", "MTX", "TRZ", "VEH"))
#     ) %>%
#     ggplot(aes(x = time, y = counts)) +
#     geom_boxplot(aes(fill = trt)) +
#     scale_fill_manual(values = drug_pal) +
#     theme_bw() +
#     ylab("log2 cpm RNA") +
#     ggtitle(paste0(" Log2cpm of ", PEAK))
#   
#   plot(gene_plot)
# }
# 



filt_raw_counts_noY %>%
  cpm(., log = TRUE) %>% 
  as.data.frame() %>% 
  rownames_to_column("Peakid") %>% 
  dplyr::filter(Peakid %in% SNP_DAR_overlap_direct$Peakid) %>% 
  pivot_longer(., cols= !Peakid, names_to = "sample",values_to = "log2cpm") %>% 
  separate_wider_delim(, cols=sample, names =c("ind","trt","time"),delim="_",cols_remove = FALSE) %>% 
  mutate(
      time = factor(time, levels = c("3h", "24h")),
      trt = factor(trt, levels = c("DOX", "EPI", "DNR", "MTX", "TRZ", "VEH"))
    ) %>%
    ggplot(aes(x = time, y = log2cpm)) +
    geom_boxplot(aes(fill = trt)) +
    scale_fill_manual(values = drug_pal) +
    theme_bw() +
  facet_wrap(~Peakid, scales="free_y")+
    ylab("log2 cpm ATAC regions") 

Version Author Date
b1638d9 reneeisnowhere 2025-07-29
1429820 reneeisnowhere 2025-07-21
DOX_dar_diff <- DOX_DAR_24hr_table %>% 
  dplyr::filter(mcols.adj.P.Val<0.05)%>% 
  dplyr::rename("Peakid"=mcols.genes)
# TAD_SNP_Peak_ol %>% 
#   dplyr::filter(TAD_id =="TAD_102") %>% 
#   dplyr::filter( Peakid%in%DOX_DAR_sig$Peakid)

filt_raw_counts_noY %>%
  cpm(., log = TRUE) %>% 
  as.data.frame() %>% 
  rownames_to_column("Peakid") %>% 
  dplyr::filter(Peakid =="chr1.173823770.173825267") %>% 
  pivot_longer(., cols= !Peakid, names_to = "sample",values_to = "log2cpm") %>% 
  separate_wider_delim(, cols=sample, names =c("ind","trt","time"),delim="_",cols_remove = FALSE) %>% 
  mutate(
      time = factor(time, levels = c("3h", "24h")),
      trt = factor(trt, levels = c("DOX", "EPI", "DNR", "MTX", "TRZ", "VEH"))
    ) %>%
    ggplot(aes(x = time, y = log2cpm)) +
    geom_boxplot(aes(fill = trt)) +
    scale_fill_manual(values = drug_pal) +
    theme_bw() +
  facet_wrap(~Peakid, scales="free_y")+
    ylab("log2 cpm ATAC regions") 

SNP DAR direct overlap heatmap

SNP_DAR_overlap_mat <-
SNP_DAR_overlap_direct %>% 
  dplyr::select(Peakid,RSID) %>% 
  left_join(., snp_tad_df,by= c("RSID"="RSID")) %>% 
  dplyr::select(Peakid, TAD_id, RSID) %>% 
 left_join(., all_results_pivot, by=c("Peakid"="genes")) %>% 
  tidyr::unite(., name,Peakid,RSID) 

SNP_DAR_sig_mat <-   SNP_DAR_overlap_direct %>% 
    dplyr::select(Peakid,RSID) %>% 
  left_join(., snp_tad_df,by= c("RSID"="RSID")) %>% 
  dplyr::select(Peakid, TAD_id, RSID) %>% 
    left_join(., ATAC_all_adj.pvals, by=c("Peakid"="genes")) %>% 
    tidyr::unite(., name,Peakid,RSID) %>% 
    column_to_rownames("name") %>% 
  as.matrix()


Cardotox_mat_3 <-   SNP_DAR_overlap_mat %>%
  dplyr::select(name,DOX_3:TRZ_24) %>% 
  column_to_rownames("name") %>% 
  as.matrix()

annot_map_df_3 <- SNP_DAR_overlap_mat %>% 
  dplyr::select(name,TAD_id) %>% 
  column_to_rownames("name") 
annot_map_3 <-
  ComplexHeatmap::rowAnnotation(TAD_id=SNP_DAR_overlap_mat$TAD_id)


simply_map_lfc_3 <- ComplexHeatmap::Heatmap(Cardotox_mat_3,
                        #                   col = col_fun,
                        left_annotation = annot_map_3,
                        column_title="Cardiotox SNP direct overlaps",
                        show_row_names = TRUE,
                       row_names_max_width= ComplexHeatmap::max_text_width(rownames(Cardotox_mat_3),                                                        gp=gpar(fontsize=14)),
                        heatmap_legend_param = list(direction = "horizontal"),
                        show_column_names = TRUE,
                        cluster_rows = FALSE,
                        cluster_columns = FALSE,
                       cell_fun = function(j, i, x, y, width, height, fill) {
  rowname <- rownames(Cardotox_mat_3)[i]
  colname <- colnames(Cardotox_mat_3)[j]

  if (!is.na(SNP_DAR_sig_mat[rowname, colname]) &&
      SNP_DAR_sig_mat[rowname, colname] < 0.05) {
    grid.text("*", x, y, gp = gpar(fontsize = 20))
  }
})




ComplexHeatmap::draw(simply_map_lfc_3, 
     merge_legend = TRUE, 
      
     heatmap_legend_side = "left", 
    annotation_legend_side = "left")

Version Author Date
b1638d9 reneeisnowhere 2025-07-29

sessionInfo()
R version 4.4.2 (2024-10-31 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 26100)

Matrix products: default


locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

time zone: America/Chicago
tzcode source: internal

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] BSgenome.Hsapiens.UCSC.hg38_1.4.5       
 [2] BSgenome_1.74.0                         
 [3] BiocIO_1.16.0                           
 [4] Biostrings_2.74.1                       
 [5] XVector_0.46.0                          
 [6] liftOver_1.30.0                         
 [7] Homo.sapiens_1.3.1                      
 [8] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2 
 [9] GO.db_3.20.0                            
[10] OrganismDbi_1.48.0                      
[11] gwascat_2.38.0                          
[12] ComplexHeatmap_2.22.0                   
[13] readxl_1.4.5                            
[14] circlize_0.4.16                         
[15] epitools_0.5-10.1                       
[16] ggrepel_0.9.6                           
[17] plyranges_1.26.0                        
[18] ggsignif_0.6.4                          
[19] genomation_1.38.0                       
[20] smplot2_0.2.5                           
[21] eulerr_7.0.2                            
[22] biomaRt_2.62.1                          
[23] devtools_2.4.5                          
[24] usethis_3.1.0                           
[25] ggpubr_0.6.1                            
[26] BiocParallel_1.40.2                     
[27] scales_1.4.0                            
[28] VennDiagram_1.7.3                       
[29] futile.logger_1.4.3                     
[30] gridExtra_2.3                           
[31] ggfortify_0.4.18                        
[32] edgeR_4.4.2                             
[33] limma_3.62.2                            
[34] rtracklayer_1.66.0                      
[35] org.Hs.eg.db_3.20.0                     
[36] TxDb.Hsapiens.UCSC.hg38.knownGene_3.20.0
[37] GenomicFeatures_1.58.0                  
[38] AnnotationDbi_1.68.0                    
[39] Biobase_2.66.0                          
[40] ChIPpeakAnno_3.40.0                     
[41] GenomicRanges_1.58.0                    
[42] GenomeInfoDb_1.42.3                     
[43] IRanges_2.40.1                          
[44] S4Vectors_0.44.0                        
[45] BiocGenerics_0.52.0                     
[46] ChIPseeker_1.42.1                       
[47] RColorBrewer_1.1-3                      
[48] broom_1.0.8                             
[49] kableExtra_1.4.0                        
[50] lubridate_1.9.4                         
[51] forcats_1.0.0                           
[52] stringr_1.5.1                           
[53] dplyr_1.1.4                             
[54] purrr_1.0.4                             
[55] readr_2.1.5                             
[56] tidyr_1.3.1                             
[57] tibble_3.3.0                            
[58] ggplot2_3.5.2                           
[59] tidyverse_2.0.0                         
[60] workflowr_1.7.1                         

loaded via a namespace (and not attached):
  [1] R.methodsS3_1.8.2           dichromat_2.0-0.1          
  [3] vroom_1.6.5                 progress_1.2.3             
  [5] urlchecker_1.0.1            nnet_7.3-20                
  [7] vctrs_0.6.5                 ggtangle_0.0.7             
  [9] digest_0.6.37               png_0.1-8                  
 [11] shape_1.4.6.1               git2r_0.36.2               
 [13] magick_2.8.7                MASS_7.3-65                
 [15] reshape2_1.4.4              foreach_1.5.2              
 [17] httpuv_1.6.16               qvalue_2.38.0              
 [19] withr_3.0.2                 xfun_0.52                  
 [21] ggfun_0.1.9                 ellipsis_0.3.2             
 [23] survival_3.8-3              memoise_2.0.1              
 [25] profvis_0.4.0               systemfonts_1.2.3          
 [27] tidytree_0.4.6              zoo_1.8-14                 
 [29] GlobalOptions_0.1.2         gtools_3.9.5               
 [31] R.oo_1.27.1                 Formula_1.2-5              
 [33] prettyunits_1.2.0           KEGGREST_1.46.0            
 [35] promises_1.3.3              httr_1.4.7                 
 [37] rstatix_0.7.2               restfulr_0.0.16            
 [39] ps_1.9.1                    rstudioapi_0.17.1          
 [41] UCSC.utils_1.2.0            miniUI_0.1.2               
 [43] generics_0.1.4              DOSE_4.0.1                 
 [45] base64enc_0.1-3             processx_3.8.6             
 [47] curl_6.4.0                  zlibbioc_1.52.0            
 [49] GenomeInfoDbData_1.2.13     SparseArray_1.6.2          
 [51] RBGL_1.82.0                 xtable_1.8-4               
 [53] doParallel_1.0.17           evaluate_1.0.4             
 [55] S4Arrays_1.6.0              BiocFileCache_2.14.0       
 [57] hms_1.1.3                   colorspace_2.1-1           
 [59] filelock_1.0.3              magrittr_2.0.3             
 [61] later_1.4.2                 ggtree_3.14.0              
 [63] lattice_0.22-7              getPass_0.2-4              
 [65] XML_3.99-0.18               cowplot_1.1.3              
 [67] matrixStats_1.5.0           Hmisc_5.2-3                
 [69] pillar_1.11.0               nlme_3.1-168               
 [71] iterators_1.0.14            pwalign_1.2.0              
 [73] gridBase_0.4-7              caTools_1.18.3             
 [75] compiler_4.4.2              stringi_1.8.7              
 [77] SummarizedExperiment_1.36.0 GenomicAlignments_1.42.0   
 [79] plyr_1.8.9                  crayon_1.5.3               
 [81] abind_1.4-8                 gridGraphics_0.5-1         
 [83] locfit_1.5-9.12             bit_4.6.0                  
 [85] fastmatch_1.1-6             whisker_0.4.1              
 [87] codetools_0.2-20            textshaping_1.0.1          
 [89] bslib_0.9.0                 GetoptLong_1.0.5           
 [91] multtest_2.62.0             mime_0.13                  
 [93] splines_4.4.2               Rcpp_1.1.0                 
 [95] dbplyr_2.5.0                cellranger_1.1.0           
 [97] utf8_1.2.6                  knitr_1.50                 
 [99] blob_1.2.4                  clue_0.3-66                
[101] AnnotationFilter_1.30.0     fs_1.6.6                   
[103] checkmate_2.3.2             pkgbuild_1.4.8             
[105] ggplotify_0.1.2             Matrix_1.7-3               
[107] callr_3.7.6                 statmod_1.5.0              
[109] tzdb_0.5.0                  svglite_2.2.1              
[111] pkgconfig_2.0.3             tools_4.4.2                
[113] cachem_1.1.0                RSQLite_2.4.1              
[115] viridisLite_0.4.2           DBI_1.2.3                  
[117] impute_1.80.0               fastmap_1.2.0              
[119] rmarkdown_2.29              Rsamtools_2.22.0           
[121] sass_0.4.10                 patchwork_1.3.1            
[123] BiocManager_1.30.26         VariantAnnotation_1.52.0   
[125] graph_1.84.1                carData_3.0-5              
[127] rpart_4.1.24                farver_2.1.2               
[129] yaml_2.3.10                 MatrixGenerics_1.18.1      
[131] foreign_0.8-90              cli_3.6.5                  
[133] txdbmaker_1.2.1             lifecycle_1.0.4            
[135] lambda.r_1.2.4              sessioninfo_1.2.3          
[137] backports_1.5.0             timechange_0.3.0           
[139] gtable_0.3.6                rjson_0.2.23               
[141] parallel_4.4.2              ape_5.8-1                  
[143] jsonlite_2.0.0              bitops_1.0-9               
[145] bit64_4.6.0-1               pwr_1.3-0                  
[147] yulab.utils_0.2.0           futile.options_1.0.1       
[149] jquerylib_0.1.4             GOSemSim_2.32.0            
[151] R.utils_2.13.0              snpStats_1.56.0            
[153] lazyeval_0.2.2              shiny_1.11.1               
[155] htmltools_0.5.8.1           enrichplot_1.26.6          
[157] rappdirs_0.3.3              formatR_1.14               
[159] ensembldb_2.30.0            glue_1.8.0                 
[161] httr2_1.1.2                 RCurl_1.98-1.17            
[163] InteractionSet_1.34.0       rprojroot_2.0.4            
[165] treeio_1.30.0               boot_1.3-31                
[167] universalmotif_1.24.2       igraph_2.1.4               
[169] R6_2.6.1                    gplots_3.2.0               
[171] labeling_0.4.3              cluster_2.1.8.1            
[173] pkgload_1.4.0               regioneR_1.38.0            
[175] aplot_0.2.8                 DelayedArray_0.32.0        
[177] tidyselect_1.2.1            plotrix_3.8-4              
[179] ProtGenerics_1.38.0         htmlTable_2.4.3            
[181] xml2_1.3.8                  car_3.1-3                  
[183] seqPattern_1.38.0           KernSmooth_2.23-26         
[185] data.table_1.17.6           htmlwidgets_1.6.4          
[187] fgsea_1.32.4                rlang_1.1.6                
[189] remotes_2.5.0               Cairo_1.6-2