Last updated: 2025-05-15
Checks: 7 0
Knit directory: ATAC_learning/
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20231016)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version b62ef0b. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .RData
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/H3K27ac_integration_noM.Rmd
Ignored: data/ACresp_SNP_table.csv
Ignored: data/ARR_SNP_table.csv
Ignored: data/All_merged_peaks.tsv
Ignored: data/CAD_gwas_dataframe.RDS
Ignored: data/CTX_SNP_table.csv
Ignored: data/Collapsed_expressed_NG_peak_table.csv
Ignored: data/DEG_toplist_sep_n45.RDS
Ignored: data/FRiP_first_run.txt
Ignored: data/Final_four_data/
Ignored: data/Frip_1_reads.csv
Ignored: data/Frip_2_reads.csv
Ignored: data/Frip_3_reads.csv
Ignored: data/Frip_4_reads.csv
Ignored: data/Frip_5_reads.csv
Ignored: data/Frip_6_reads.csv
Ignored: data/GO_KEGG_analysis/
Ignored: data/HF_SNP_table.csv
Ignored: data/Ind1_75DA24h_dedup_peaks.csv
Ignored: data/Ind1_TSS_peaks.RDS
Ignored: data/Ind1_firstfragment_files.txt
Ignored: data/Ind1_fragment_files.txt
Ignored: data/Ind1_peaks_list.RDS
Ignored: data/Ind1_summary.txt
Ignored: data/Ind2_TSS_peaks.RDS
Ignored: data/Ind2_fragment_files.txt
Ignored: data/Ind2_peaks_list.RDS
Ignored: data/Ind2_summary.txt
Ignored: data/Ind3_TSS_peaks.RDS
Ignored: data/Ind3_fragment_files.txt
Ignored: data/Ind3_peaks_list.RDS
Ignored: data/Ind3_summary.txt
Ignored: data/Ind4_79B24h_dedup_peaks.csv
Ignored: data/Ind4_TSS_peaks.RDS
Ignored: data/Ind4_V24h_fraglength.txt
Ignored: data/Ind4_fragment_files.txt
Ignored: data/Ind4_fragment_filesN.txt
Ignored: data/Ind4_peaks_list.RDS
Ignored: data/Ind4_summary.txt
Ignored: data/Ind5_TSS_peaks.RDS
Ignored: data/Ind5_fragment_files.txt
Ignored: data/Ind5_fragment_filesN.txt
Ignored: data/Ind5_peaks_list.RDS
Ignored: data/Ind5_summary.txt
Ignored: data/Ind6_TSS_peaks.RDS
Ignored: data/Ind6_fragment_files.txt
Ignored: data/Ind6_peaks_list.RDS
Ignored: data/Ind6_summary.txt
Ignored: data/Knowles_4.RDS
Ignored: data/Knowles_5.RDS
Ignored: data/Knowles_6.RDS
Ignored: data/LiSiLTDNRe_TE_df.RDS
Ignored: data/MI_gwas.RDS
Ignored: data/SNP_GWAS_PEAK_MRC_id
Ignored: data/SNP_GWAS_PEAK_MRC_id.csv
Ignored: data/SNP_gene_cat_list.tsv
Ignored: data/SNP_supp_schneider.RDS
Ignored: data/TE_info/
Ignored: data/TFmapnames.RDS
Ignored: data/all_TSSE_scores.RDS
Ignored: data/all_four_filtered_counts.txt
Ignored: data/aln_run1_results.txt
Ignored: data/anno_ind1_DA24h.RDS
Ignored: data/anno_ind4_V24h.RDS
Ignored: data/annotated_gwas_SNPS.csv
Ignored: data/background_n45_he_peaks.RDS
Ignored: data/cardiac_muscle_FRIP.csv
Ignored: data/cardiomyocyte_FRIP.csv
Ignored: data/col_ng_peak.csv
Ignored: data/cormotif_full_4_run.RDS
Ignored: data/cormotif_full_4_run_he.RDS
Ignored: data/cormotif_full_6_run.RDS
Ignored: data/cormotif_full_6_run_he.RDS
Ignored: data/cormotif_probability_45_list.csv
Ignored: data/cormotif_probability_45_list_he.csv
Ignored: data/cormotif_probability_all_6_list.csv
Ignored: data/cormotif_probability_all_6_list_he.csv
Ignored: data/datasave.RDS
Ignored: data/embryo_heart_FRIP.csv
Ignored: data/enhancer_list_ENCFF126UHK.bed
Ignored: data/enhancerdata/
Ignored: data/filt_Peaks_efit2.RDS
Ignored: data/filt_Peaks_efit2_bl.RDS
Ignored: data/filt_Peaks_efit2_n45.RDS
Ignored: data/first_Peaksummarycounts.csv
Ignored: data/first_run_frag_counts.txt
Ignored: data/full_bedfiles/
Ignored: data/gene_ref.csv
Ignored: data/gwas_1_dataframe.RDS
Ignored: data/gwas_2_dataframe.RDS
Ignored: data/gwas_3_dataframe.RDS
Ignored: data/gwas_4_dataframe.RDS
Ignored: data/gwas_5_dataframe.RDS
Ignored: data/high_conf_peak_counts.csv
Ignored: data/high_conf_peak_counts.txt
Ignored: data/high_conf_peaks_bl_counts.txt
Ignored: data/high_conf_peaks_counts.txt
Ignored: data/hits_files/
Ignored: data/hyper_files/
Ignored: data/hypo_files/
Ignored: data/ind1_DA24hpeaks.RDS
Ignored: data/ind1_TSSE.RDS
Ignored: data/ind2_TSSE.RDS
Ignored: data/ind3_TSSE.RDS
Ignored: data/ind4_TSSE.RDS
Ignored: data/ind4_V24hpeaks.RDS
Ignored: data/ind5_TSSE.RDS
Ignored: data/ind6_TSSE.RDS
Ignored: data/initial_complete_stats_run1.txt
Ignored: data/left_ventricle_FRIP.csv
Ignored: data/median_24_lfc.RDS
Ignored: data/median_3_lfc.RDS
Ignored: data/mergedPeads.gff
Ignored: data/mergedPeaks.gff
Ignored: data/motif_list_full
Ignored: data/motif_list_n45
Ignored: data/motif_list_n45.RDS
Ignored: data/multiqc_fastqc_run1.txt
Ignored: data/multiqc_fastqc_run2.txt
Ignored: data/multiqc_genestat_run1.txt
Ignored: data/multiqc_genestat_run2.txt
Ignored: data/my_hc_filt_counts.RDS
Ignored: data/my_hc_filt_counts_n45.RDS
Ignored: data/n45_bedfiles/
Ignored: data/n45_files
Ignored: data/other_papers/
Ignored: data/peakAnnoList_1.RDS
Ignored: data/peakAnnoList_2.RDS
Ignored: data/peakAnnoList_24_full.RDS
Ignored: data/peakAnnoList_24_n45.RDS
Ignored: data/peakAnnoList_3.RDS
Ignored: data/peakAnnoList_3_full.RDS
Ignored: data/peakAnnoList_3_n45.RDS
Ignored: data/peakAnnoList_4.RDS
Ignored: data/peakAnnoList_5.RDS
Ignored: data/peakAnnoList_6.RDS
Ignored: data/peakAnnoList_Eight.RDS
Ignored: data/peakAnnoList_full_motif.RDS
Ignored: data/peakAnnoList_n45_motif.RDS
Ignored: data/siglist_full.RDS
Ignored: data/siglist_n45.RDS
Ignored: data/summarized_peaks_dataframe.txt
Ignored: data/summary_peakIDandReHeat.csv
Ignored: data/test.list.RDS
Ignored: data/testnames.txt
Ignored: data/toplist_6.RDS
Ignored: data/toplist_full.RDS
Ignored: data/toplist_full_DAR_6.RDS
Ignored: data/toplist_n45.RDS
Ignored: data/trimmed_seq_length.csv
Ignored: data/unclassified_full_set_peaks.RDS
Ignored: data/unclassified_n45_set_peaks.RDS
Ignored: data/xstreme/
Untracked files:
Untracked: RNA_seq_integration.Rmd
Untracked: analysis/.gitignore
Untracked: analysis/Diagnosis-tmm.Rmd
Untracked: analysis/Expressed_RNA_associations.Rmd
Untracked: analysis/LFC_corr.Rmd
Untracked: analysis/SVA.Rmd
Untracked: analysis/Tan2020.Rmd
Untracked: analysis/making_master_peaks_list.Rmd
Untracked: analysis/my_hc_filt_counts.csv
Untracked: code/IGV_snapshot_code.R
Untracked: code/LongDARlist.R
Untracked: code/just_for_Fun.R
Untracked: output/cormotif_probability_45_list.csv
Untracked: output/cormotif_probability_all_6_list.csv
Untracked: setup.RData
Unstaged changes:
Modified: ATAC_learning.Rproj
Modified: analysis/AF_HF_SNPs.Rmd
Modified: analysis/Cardiotox_SNPs.Rmd
Modified: analysis/H3K27ac_cormotif.Rmd
Modified: analysis/Jaspar_motif.Rmd
Modified: analysis/Jaspar_motif_ff.Rmd
Modified: analysis/RNA_seq_integration.Rmd
Modified: analysis/final_four_analysis.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/TSS_and_CUG.Rmd
) and HTML
(docs/TSS_and_CUG.html
) files. If you’ve configured a
remote Git repository (see ?wflow_git_remote
), click on the
hyperlinks in the table below to view the files as they were in that
past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | b62ef0b | reneeisnowhere | 2025-05-15 | updates and verification of runs |
html | 5e6e462 | reneeisnowhere | 2025-05-07 | Build site. |
Rmd | 2db35c7 | reneeisnowhere | 2025-05-07 | updates to analysis |
library(tidyverse)
library(kableExtra)
library(broom)
library(RColorBrewer)
library(ChIPseeker)
library("TxDb.Hsapiens.UCSC.hg38.knownGene")
library("org.Hs.eg.db")
library(rtracklayer)
library(edgeR)
library(ggfortify)
library(limma)
library(readr)
library(BiocGenerics)
library(gridExtra)
library(VennDiagram)
library(scales)
library(BiocParallel)
library(ggpubr)
library(devtools)
library(biomaRt)
library(eulerr)
library(smplot2)
library(genomation)
library(ggsignif)
library(plyranges)
library(ggrepel)
library(epitools)
library(circlize)
Getting TSS locations for all genes:
txdb <- TxDb.Hsapiens.UCSC.hg38.knownGene
tss_gr <- transcripts(txdb)
tss_gr <- resize(tss_gr, width = 1, fix = "start") # TSS is start for both strands
Loading CpG-island locations from UCSC and converting to granges
session <- browserSession("UCSC")
genome(session) <- "hg38"
cpg_table <- getTable(ucscTableQuery(session, track = "CpG Islands"))
cpg_gr <- GRanges(seqnames = cpg_table$chrom,
ranges = IRanges(start = cpg_table$chromStart + 1, end = cpg_table$chromEnd),
strand = "*")
Collapsed_peaks <- read_delim("data/Final_four_data/collapsed_new_peaks.txt",
delim = "\t",
escape_double = FALSE,
trim_ws = TRUE)
Motif_list_gr <- readRDS("data/Final_four_data/re_analysis/Motif_list_granges.RDS")
##order specific
df_list <- plyr::llply(Motif_list_gr, as.data.frame)
### no change motif_list_gr names so they do not overwrite the dataframes
names(Motif_list_gr) <- paste0(names(Motif_list_gr), "_gr")
list2env(Motif_list_gr,envir= .GlobalEnv)
<environment: R_GlobalEnv>
list2env(df_list,envir= .GlobalEnv)
<environment: R_GlobalEnv>
final_peaks <- Collapsed_peaks %>%
dplyr::filter(Peakid %in% mcols(all_regions_gr)$Peakid) %>%
GRanges()
Assess the overlap between my data sets
peaks_tss_annotated <- final_peaks %>%
join_overlap_left(tss_gr) %>%
mutate(TSS_status = ifelse(is.na(tx_id), "non-TSS", "TSS"))
olap <- findOverlaps(final_peaks, cpg_gr)
peak_cpg_status <- rep("non-CpG", length(final_peaks))
# Mark peaks that overlap CpG islands
peak_cpg_status[unique(queryHits(olap))] <- "CpG"
final_peaks$CpG_status <- peak_cpg_status
CPG_TSS_status_df <- final_peaks %>%
as.data.frame() %>%
dplyr::select(Peakid,CpG_status) %>%
left_join(.,(peaks_tss_annotated %>%
as.data.frame() %>%
dplyr::select(Peakid,TSS_status) %>%
distinct()), by=c("Peakid"="Peakid")) %>%
mutate(mrc = case_when(
Peakid %in% EAR_open$Peakid ~ "EAR_open",
Peakid %in% EAR_close$Peakid ~ "EAR_close",
Peakid %in% ESR_open$Peakid ~ "ESR_open",
Peakid %in% ESR_close$Peakid ~ "ESR_close",
Peakid %in% ESR_opcl$Peakid ~ "ESR_opcl",
Peakid %in% LR_open$Peakid ~ "LR_open",
Peakid %in% LR_close$Peakid ~ "LR_close",
Peakid %in% NR$Peakid ~ "NR",
Peakid %in% ESR_clop$Peakid ~ "ESR_clop",
TRUE ~ "not_mrc"
))
CpG_mat <- CPG_TSS_status_df %>%
mutate(mrc=factor(mrc, levels = c("EAR_open","ESR_open","LR_open","ESR_opcl", "EAR_close","ESR_close","LR_close","ESR_clop", "NR"))) %>%
dplyr::filter(mrc != "not_mrc") %>%
group_by(Peakid) %>%
summarise(CpG_status = ifelse(any(CpG_status == "CpG"), "CpG_peak", "not_CpG_peak"), mrc=unique(mrc)) %>%
ungroup() %>%
group_by(CpG_status, mrc) %>%
tally %>%
mutate(mrc=factor(mrc, levels = c("EAR_open","ESR_open","LR_open","ESR_opcl", "EAR_close","ESR_close","LR_close","ESR_clop", "NR"))) %>%
pivot_wider(id_cols = mrc, names_from = CpG_status,values_from = n) %>%
column_to_rownames("mrc") %>%
na.omit(.) %>%
as.matrix(.)
CpG_mat
CpG_peak not_CpG_peak
EAR_open 1316 3583
ESR_open 783 5494
LR_open 788 24829
ESR_opcl 2 201
EAR_close 37 3038
ESR_close 351 7583
LR_close 1549 17061
NR 13639 71515
TSS_mat <- CPG_TSS_status_df %>%
mutate(mrc=factor(mrc, levels = c("EAR_open","ESR_open","LR_open","ESR_opcl", "EAR_close","ESR_close","LR_close","ESR_clop", "NR"))) %>%
dplyr::filter(mrc != "not_mrc") %>%
group_by(Peakid) %>%
summarise(TSS_status = ifelse(any(TSS_status == "TSS"), "TSS_peak", "not_TSS_peak"), mrc=unique(mrc)) %>%
ungroup() %>%
group_by(TSS_status, mrc) %>%
tally %>%
mutate(mrc=factor(mrc, levels = c("EAR_open","ESR_open","LR_open","ESR_opcl", "EAR_close","ESR_close","LR_close","ESR_clop", "NR"))) %>%
pivot_wider(id_cols = mrc, names_from = TSS_status,values_from = n) %>%
column_to_rownames("mrc") %>%
na.omit(.) %>%
as.matrix(.)
TSS_mat
TSS_peak not_TSS_peak
EAR_open 1337 3562
ESR_open 578 5699
LR_open 1445 24172
ESR_opcl 10 193
EAR_close 159 2916
ESR_close 665 7269
LR_close 2071 16539
ESR_clop 25 689
NR 15183 69971
matrix_list <- list("CpG"=CpG_mat,"TSS"=TSS_mat)
results_or <- data.frame(Matrix_Name = character(),
Row_Compared = character(),
Odds_Ratio = numeric(),
Lower_CI = numeric(),
Upper_CI = numeric(),
P_Value = numeric(),
stringsAsFactors = FALSE)
# Loop through each matrix in the list
for (matrix_name in names(matrix_list)) {
current_matrix <- matrix_list[[matrix_name]]
n_rows <- nrow(current_matrix)
# Loop through each row of the current matrix (except the last row)
for (i in 1:(n_rows - 1)) {
# Perform odds ratio test between row i and the last row using epitools
test_result <- tryCatch({
contingency_table <- rbind(current_matrix[i, ], current_matrix[n_rows, ])
# Check if any row in the contingency table contains only zeros
if (any(rowSums(contingency_table) == 0)) {
stop("Contingency table contains empty rows.")
}
oddsratio_result <- oddsratio(contingency_table)
# Ensure the oddsratio result has at least 2 rows
if (nrow(oddsratio_result$measure) < 2) {
stop("oddsratio result does not have enough data.")
}
list(oddsratio = oddsratio_result, p.value = oddsratio_result$p.value[2,"chi.square"])
}, error = function(e) {
cat("Error in odds ratio test for row", i, "in matrix", matrix_name, ":", e$message, "\n")
return(NULL)
})
# Only store the result if test_result is valid (i.e., not NULL)
if (!is.null(test_result)) {
or_value <- test_result$oddsratio$measure[2, "estimate"]
lower_ci <- test_result$oddsratio$measure[2, "lower"]
upper_ci <- test_result$oddsratio$measure[2, "upper"]
p_value <- test_result$oddsratio$p.value[2,"chi.square"]
# Check if the values are numeric and valid (not NA)
if (!is.na(or_value) && !is.na(lower_ci) && !is.na(upper_ci) && !is.na(p_value)) {
# Store the results in the dataframe
results_or <- rbind(results_or, data.frame(Matrix_Name = matrix_name,
Row_Compared = rownames(current_matrix)[i],
Odds_Ratio = or_value,
Lower_CI = lower_ci,
Upper_CI = upper_ci,
P_Value = p_value))
}
}
}
}
# Print the resulting dataframe
print(results_or) %>%
kable(., caption = "Odd ratio results and significance values of TSS and CpG enrichment compared to No response group") %>%
kable_paper("striped", full_width = TRUE) %>%
kable_styling(full_width = FALSE, font_size = 14) %>%
scroll_box(width = "100%", height = "400px")
Matrix_Name Row_Compared Odds_Ratio Lower_CI Upper_CI
estimate CpG EAR_open 1.92597777 1.802855929 2.05633456
estimate1 CpG ESR_open 0.74741887 0.691509768 0.80677202
estimate2 CpG LR_open 0.16644962 0.154603250 0.17896478
estimate3 CpG ESR_opcl 0.05619206 0.008668747 0.17429955
estimate4 CpG EAR_close 0.06414412 0.045525224 0.08733262
estimate5 CpG ESR_close 0.24281621 0.217444012 0.27021472
estimate6 CpG LR_close 0.47610262 0.450407703 0.50292664
estimate7 TSS EAR_open 1.72991067 1.620164455 1.84599655
estimate8 TSS ESR_open 0.46752209 0.427988953 0.50971415
estimate9 TSS LR_open 0.27553001 0.260470339 0.29126056
estimate10 TSS ESR_opcl 0.24250730 0.119554510 0.43398244
estimate11 TSS EAR_close 0.25154837 0.213387053 0.29427899
estimate12 TSS ESR_close 0.42171208 0.388410369 0.45705409
estimate13 TSS LR_close 0.57711710 0.549429034 0.60591901
estimate14 TSS ESR_clop 0.16828570 0.109862297 0.24523928
P_Value
estimate 1.450783e-87
estimate1 1.072886e-13
estimate2 0.000000e+00
estimate3 5.291085e-09
estimate4 3.803627e-110
estimate5 3.973011e-168
estimate6 2.364549e-159
estimate7 3.683755e-62
estimate8 3.264184e-68
estimate9 0.000000e+00
estimate10 1.580337e-06
estimate11 5.555494e-74
estimate12 9.408337e-102
estimate13 1.306899e-109
estimate14 1.731729e-23
Matrix_Name | Row_Compared | Odds_Ratio | Lower_CI | Upper_CI | P_Value | |
---|---|---|---|---|---|---|
estimate | CpG | EAR_open | 1.9259778 | 1.8028559 | 2.0563346 | 0.0e+00 |
estimate1 | CpG | ESR_open | 0.7474189 | 0.6915098 | 0.8067720 | 0.0e+00 |
estimate2 | CpG | LR_open | 0.1664496 | 0.1546032 | 0.1789648 | 0.0e+00 |
estimate3 | CpG | ESR_opcl | 0.0561921 | 0.0086687 | 0.1742996 | 0.0e+00 |
estimate4 | CpG | EAR_close | 0.0641441 | 0.0455252 | 0.0873326 | 0.0e+00 |
estimate5 | CpG | ESR_close | 0.2428162 | 0.2174440 | 0.2702147 | 0.0e+00 |
estimate6 | CpG | LR_close | 0.4761026 | 0.4504077 | 0.5029266 | 0.0e+00 |
estimate7 | TSS | EAR_open | 1.7299107 | 1.6201645 | 1.8459966 | 0.0e+00 |
estimate8 | TSS | ESR_open | 0.4675221 | 0.4279890 | 0.5097142 | 0.0e+00 |
estimate9 | TSS | LR_open | 0.2755300 | 0.2604703 | 0.2912606 | 0.0e+00 |
estimate10 | TSS | ESR_opcl | 0.2425073 | 0.1195545 | 0.4339824 | 1.6e-06 |
estimate11 | TSS | EAR_close | 0.2515484 | 0.2133871 | 0.2942790 | 0.0e+00 |
estimate12 | TSS | ESR_close | 0.4217121 | 0.3884104 | 0.4570541 | 0.0e+00 |
estimate13 | TSS | LR_close | 0.5771171 | 0.5494290 | 0.6059190 | 0.0e+00 |
estimate14 | TSS | ESR_clop | 0.1682857 | 0.1098623 | 0.2452393 | 0.0e+00 |
col_fun_OR = colorRamp2(c(0,1,1.5,5), c("blueviolet","white","lightgreen","green3" ))
sig_mat_OR <- results_or %>%
as.data.frame() %>%
dplyr::select( Matrix_Name,Row_Compared,P_Value) %>%
group_by(Row_Compared) %>%
mutate(rank_val=rank(P_Value, ties.method = "first")) %>%
mutate(BH_correction= p.adjust(P_Value,method= "BH")) %>%
pivot_wider(., id_cols = Matrix_Name, names_from = Row_Compared, values_from = BH_correction) %>%
dplyr::select(Matrix_Name,EAR_open,ESR_open,LR_open,ESR_opcl,EAR_close,ESR_close,LR_close,ESR_clop) %>%
column_to_rownames("Matrix_Name") %>%
as.matrix()
# saveRDS(results_or,"data/Final_four_data/re_analysis/OR_results_TSS_CpG_df_1bp.RDS")
results_or %>%
as.data.frame() %>%
dplyr::select( Matrix_Name,Row_Compared,Odds_Ratio) %>%
pivot_wider(., id_cols = Matrix_Name, names_from = Row_Compared, values_from = Odds_Ratio) %>%
dplyr::select(Matrix_Name,EAR_open,ESR_open,LR_open,ESR_opcl,EAR_close,ESR_close,LR_close,ESR_clop) %>%
column_to_rownames("Matrix_Name") %>%
as.matrix() %>%
ComplexHeatmap::Heatmap(. ,col = col_fun_OR,
cluster_rows=FALSE,
cluster_columns=FALSE,
column_names_side = "top",
column_names_rot = 45,
# na_col = "black",
cell_fun = function(j, i, x, y, width, height, fill) {if (!is.na(sig_mat_OR[i, j]) && sig_mat_OR[i, j] < 0.05 && .[i, j] > 1) {
grid.text("*", x, y, gp = gpar(fontsize = 20))}})
Version | Author | Date |
---|---|---|
5e6e462 | reneeisnowhere | 2025-05-07 |
note, this is corrected for multiple testing across TSS and CUG tests only in each motif cluster.
sessionInfo()
R version 4.4.2 (2024-10-31 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 26100)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.utf8
[2] LC_CTYPE=English_United States.utf8
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.utf8
time zone: America/Chicago
tzcode source: internal
attached base packages:
[1] grid stats4 stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] circlize_0.4.16
[2] epitools_0.5-10.1
[3] ggrepel_0.9.6
[4] plyranges_1.26.0
[5] ggsignif_0.6.4
[6] genomation_1.38.0
[7] smplot2_0.2.5
[8] eulerr_7.0.2
[9] biomaRt_2.62.1
[10] devtools_2.4.5
[11] usethis_3.1.0
[12] ggpubr_0.6.0
[13] BiocParallel_1.40.0
[14] scales_1.3.0
[15] VennDiagram_1.7.3
[16] futile.logger_1.4.3
[17] gridExtra_2.3
[18] ggfortify_0.4.17
[19] edgeR_4.4.2
[20] limma_3.62.2
[21] rtracklayer_1.66.0
[22] org.Hs.eg.db_3.20.0
[23] TxDb.Hsapiens.UCSC.hg38.knownGene_3.20.0
[24] GenomicFeatures_1.58.0
[25] AnnotationDbi_1.68.0
[26] Biobase_2.66.0
[27] GenomicRanges_1.58.0
[28] GenomeInfoDb_1.42.3
[29] IRanges_2.40.1
[30] S4Vectors_0.44.0
[31] BiocGenerics_0.52.0
[32] ChIPseeker_1.42.1
[33] RColorBrewer_1.1-3
[34] broom_1.0.7
[35] kableExtra_1.4.0
[36] lubridate_1.9.4
[37] forcats_1.0.0
[38] stringr_1.5.1
[39] dplyr_1.1.4
[40] purrr_1.0.4
[41] readr_2.1.5
[42] tidyr_1.3.1
[43] tibble_3.2.1
[44] ggplot2_3.5.1
[45] tidyverse_2.0.0
[46] workflowr_1.7.1
loaded via a namespace (and not attached):
[1] fs_1.6.5
[2] matrixStats_1.5.0
[3] bitops_1.0-9
[4] enrichplot_1.26.6
[5] doParallel_1.0.17
[6] httr_1.4.7
[7] profvis_0.4.0
[8] tools_4.4.2
[9] backports_1.5.0
[10] R6_2.6.1
[11] lazyeval_0.2.2
[12] GetoptLong_1.0.5
[13] urlchecker_1.0.1
[14] withr_3.0.2
[15] prettyunits_1.2.0
[16] cli_3.6.4
[17] formatR_1.14
[18] Cairo_1.6-2
[19] sass_0.4.9
[20] Rsamtools_2.22.0
[21] systemfonts_1.2.1
[22] yulab.utils_0.2.0
[23] foreign_0.8-88
[24] DOSE_4.0.0
[25] svglite_2.1.3
[26] R.utils_2.13.0
[27] sessioninfo_1.2.3
[28] plotrix_3.8-4
[29] BSgenome_1.74.0
[30] pwr_1.3-0
[31] impute_1.80.0
[32] rstudioapi_0.17.1
[33] RSQLite_2.3.9
[34] shape_1.4.6.1
[35] generics_0.1.3
[36] gridGraphics_0.5-1
[37] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
[38] BiocIO_1.16.0
[39] vroom_1.6.5
[40] gtools_3.9.5
[41] car_3.1-3
[42] GO.db_3.20.0
[43] Matrix_1.7-3
[44] abind_1.4-8
[45] R.methodsS3_1.8.2
[46] lifecycle_1.0.4
[47] whisker_0.4.1
[48] yaml_2.3.10
[49] carData_3.0-5
[50] SummarizedExperiment_1.36.0
[51] gplots_3.2.0
[52] qvalue_2.38.0
[53] SparseArray_1.6.2
[54] BiocFileCache_2.14.0
[55] blob_1.2.4
[56] promises_1.3.2
[57] crayon_1.5.3
[58] miniUI_0.1.1.1
[59] ggtangle_0.0.6
[60] lattice_0.22-6
[61] cowplot_1.1.3
[62] KEGGREST_1.46.0
[63] magick_2.8.5
[64] ComplexHeatmap_2.22.0
[65] pillar_1.10.1
[66] knitr_1.49
[67] fgsea_1.32.2
[68] rjson_0.2.23
[69] boot_1.3-31
[70] codetools_0.2-20
[71] fastmatch_1.1-6
[72] glue_1.8.0
[73] getPass_0.2-4
[74] ggfun_0.1.8
[75] data.table_1.17.0
[76] remotes_2.5.0
[77] vctrs_0.6.5
[78] png_0.1-8
[79] treeio_1.30.0
[80] gtable_0.3.6
[81] cachem_1.1.0
[82] xfun_0.51
[83] S4Arrays_1.6.0
[84] mime_0.12
[85] iterators_1.0.14
[86] statmod_1.5.0
[87] ellipsis_0.3.2
[88] nlme_3.1-167
[89] ggtree_3.14.0
[90] bit64_4.6.0-1
[91] filelock_1.0.3
[92] progress_1.2.3
[93] rprojroot_2.0.4
[94] bslib_0.9.0
[95] rpart_4.1.24
[96] KernSmooth_2.23-26
[97] Hmisc_5.2-2
[98] colorspace_2.1-1
[99] DBI_1.2.3
[100] seqPattern_1.38.0
[101] nnet_7.3-20
[102] tidyselect_1.2.1
[103] processx_3.8.6
[104] bit_4.6.0
[105] compiler_4.4.2
[106] curl_6.2.1
[107] git2r_0.35.0
[108] httr2_1.1.1
[109] htmlTable_2.4.3
[110] xml2_1.3.7
[111] DelayedArray_0.32.0
[112] checkmate_2.3.2
[113] caTools_1.18.3
[114] callr_3.7.6
[115] rappdirs_0.3.3
[116] digest_0.6.37
[117] rmarkdown_2.29
[118] XVector_0.46.0
[119] base64enc_0.1-3
[120] htmltools_0.5.8.1
[121] pkgconfig_2.0.3
[122] MatrixGenerics_1.18.1
[123] dbplyr_2.5.0
[124] fastmap_1.2.0
[125] GlobalOptions_0.1.2
[126] rlang_1.1.5
[127] htmlwidgets_1.6.4
[128] UCSC.utils_1.2.0
[129] shiny_1.10.0
[130] farver_2.1.2
[131] jquerylib_0.1.4
[132] zoo_1.8-13
[133] jsonlite_1.9.1
[134] GOSemSim_2.32.0
[135] R.oo_1.27.0
[136] RCurl_1.98-1.16
[137] magrittr_2.0.3
[138] Formula_1.2-5
[139] GenomeInfoDbData_1.2.13
[140] ggplotify_0.1.2
[141] patchwork_1.3.0
[142] munsell_0.5.1
[143] Rcpp_1.0.14
[144] ape_5.8-1
[145] stringi_1.8.4
[146] zlibbioc_1.52.0
[147] plyr_1.8.9
[148] pkgbuild_1.4.6
[149] parallel_4.4.2
[150] Biostrings_2.74.1
[151] splines_4.4.2
[152] hms_1.1.3
[153] locfit_1.5-9.12
[154] ps_1.9.0
[155] igraph_2.1.4
[156] reshape2_1.4.4
[157] pkgload_1.4.0
[158] futile.options_1.0.1
[159] XML_3.99-0.18
[160] evaluate_1.0.3
[161] lambda.r_1.2.4
[162] foreach_1.5.2
[163] tzdb_0.4.0
[164] httpuv_1.6.15
[165] clue_0.3-66
[166] gridBase_0.4-7
[167] xtable_1.8-4
[168] restfulr_0.0.15
[169] tidytree_0.4.6
[170] rstatix_0.7.2
[171] later_1.4.1
[172] viridisLite_0.4.2
[173] aplot_0.2.5
[174] memoise_2.0.1
[175] GenomicAlignments_1.42.0
[176] cluster_2.1.8.1
[177] timechange_0.3.0