Last updated: 2025-05-15

Checks: 7 0

Knit directory: ATAC_learning/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20231016) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version b62ef0b. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/H3K27ac_integration_noM.Rmd
    Ignored:    data/ACresp_SNP_table.csv
    Ignored:    data/ARR_SNP_table.csv
    Ignored:    data/All_merged_peaks.tsv
    Ignored:    data/CAD_gwas_dataframe.RDS
    Ignored:    data/CTX_SNP_table.csv
    Ignored:    data/Collapsed_expressed_NG_peak_table.csv
    Ignored:    data/DEG_toplist_sep_n45.RDS
    Ignored:    data/FRiP_first_run.txt
    Ignored:    data/Final_four_data/
    Ignored:    data/Frip_1_reads.csv
    Ignored:    data/Frip_2_reads.csv
    Ignored:    data/Frip_3_reads.csv
    Ignored:    data/Frip_4_reads.csv
    Ignored:    data/Frip_5_reads.csv
    Ignored:    data/Frip_6_reads.csv
    Ignored:    data/GO_KEGG_analysis/
    Ignored:    data/HF_SNP_table.csv
    Ignored:    data/Ind1_75DA24h_dedup_peaks.csv
    Ignored:    data/Ind1_TSS_peaks.RDS
    Ignored:    data/Ind1_firstfragment_files.txt
    Ignored:    data/Ind1_fragment_files.txt
    Ignored:    data/Ind1_peaks_list.RDS
    Ignored:    data/Ind1_summary.txt
    Ignored:    data/Ind2_TSS_peaks.RDS
    Ignored:    data/Ind2_fragment_files.txt
    Ignored:    data/Ind2_peaks_list.RDS
    Ignored:    data/Ind2_summary.txt
    Ignored:    data/Ind3_TSS_peaks.RDS
    Ignored:    data/Ind3_fragment_files.txt
    Ignored:    data/Ind3_peaks_list.RDS
    Ignored:    data/Ind3_summary.txt
    Ignored:    data/Ind4_79B24h_dedup_peaks.csv
    Ignored:    data/Ind4_TSS_peaks.RDS
    Ignored:    data/Ind4_V24h_fraglength.txt
    Ignored:    data/Ind4_fragment_files.txt
    Ignored:    data/Ind4_fragment_filesN.txt
    Ignored:    data/Ind4_peaks_list.RDS
    Ignored:    data/Ind4_summary.txt
    Ignored:    data/Ind5_TSS_peaks.RDS
    Ignored:    data/Ind5_fragment_files.txt
    Ignored:    data/Ind5_fragment_filesN.txt
    Ignored:    data/Ind5_peaks_list.RDS
    Ignored:    data/Ind5_summary.txt
    Ignored:    data/Ind6_TSS_peaks.RDS
    Ignored:    data/Ind6_fragment_files.txt
    Ignored:    data/Ind6_peaks_list.RDS
    Ignored:    data/Ind6_summary.txt
    Ignored:    data/Knowles_4.RDS
    Ignored:    data/Knowles_5.RDS
    Ignored:    data/Knowles_6.RDS
    Ignored:    data/LiSiLTDNRe_TE_df.RDS
    Ignored:    data/MI_gwas.RDS
    Ignored:    data/SNP_GWAS_PEAK_MRC_id
    Ignored:    data/SNP_GWAS_PEAK_MRC_id.csv
    Ignored:    data/SNP_gene_cat_list.tsv
    Ignored:    data/SNP_supp_schneider.RDS
    Ignored:    data/TE_info/
    Ignored:    data/TFmapnames.RDS
    Ignored:    data/all_TSSE_scores.RDS
    Ignored:    data/all_four_filtered_counts.txt
    Ignored:    data/aln_run1_results.txt
    Ignored:    data/anno_ind1_DA24h.RDS
    Ignored:    data/anno_ind4_V24h.RDS
    Ignored:    data/annotated_gwas_SNPS.csv
    Ignored:    data/background_n45_he_peaks.RDS
    Ignored:    data/cardiac_muscle_FRIP.csv
    Ignored:    data/cardiomyocyte_FRIP.csv
    Ignored:    data/col_ng_peak.csv
    Ignored:    data/cormotif_full_4_run.RDS
    Ignored:    data/cormotif_full_4_run_he.RDS
    Ignored:    data/cormotif_full_6_run.RDS
    Ignored:    data/cormotif_full_6_run_he.RDS
    Ignored:    data/cormotif_probability_45_list.csv
    Ignored:    data/cormotif_probability_45_list_he.csv
    Ignored:    data/cormotif_probability_all_6_list.csv
    Ignored:    data/cormotif_probability_all_6_list_he.csv
    Ignored:    data/datasave.RDS
    Ignored:    data/embryo_heart_FRIP.csv
    Ignored:    data/enhancer_list_ENCFF126UHK.bed
    Ignored:    data/enhancerdata/
    Ignored:    data/filt_Peaks_efit2.RDS
    Ignored:    data/filt_Peaks_efit2_bl.RDS
    Ignored:    data/filt_Peaks_efit2_n45.RDS
    Ignored:    data/first_Peaksummarycounts.csv
    Ignored:    data/first_run_frag_counts.txt
    Ignored:    data/full_bedfiles/
    Ignored:    data/gene_ref.csv
    Ignored:    data/gwas_1_dataframe.RDS
    Ignored:    data/gwas_2_dataframe.RDS
    Ignored:    data/gwas_3_dataframe.RDS
    Ignored:    data/gwas_4_dataframe.RDS
    Ignored:    data/gwas_5_dataframe.RDS
    Ignored:    data/high_conf_peak_counts.csv
    Ignored:    data/high_conf_peak_counts.txt
    Ignored:    data/high_conf_peaks_bl_counts.txt
    Ignored:    data/high_conf_peaks_counts.txt
    Ignored:    data/hits_files/
    Ignored:    data/hyper_files/
    Ignored:    data/hypo_files/
    Ignored:    data/ind1_DA24hpeaks.RDS
    Ignored:    data/ind1_TSSE.RDS
    Ignored:    data/ind2_TSSE.RDS
    Ignored:    data/ind3_TSSE.RDS
    Ignored:    data/ind4_TSSE.RDS
    Ignored:    data/ind4_V24hpeaks.RDS
    Ignored:    data/ind5_TSSE.RDS
    Ignored:    data/ind6_TSSE.RDS
    Ignored:    data/initial_complete_stats_run1.txt
    Ignored:    data/left_ventricle_FRIP.csv
    Ignored:    data/median_24_lfc.RDS
    Ignored:    data/median_3_lfc.RDS
    Ignored:    data/mergedPeads.gff
    Ignored:    data/mergedPeaks.gff
    Ignored:    data/motif_list_full
    Ignored:    data/motif_list_n45
    Ignored:    data/motif_list_n45.RDS
    Ignored:    data/multiqc_fastqc_run1.txt
    Ignored:    data/multiqc_fastqc_run2.txt
    Ignored:    data/multiqc_genestat_run1.txt
    Ignored:    data/multiqc_genestat_run2.txt
    Ignored:    data/my_hc_filt_counts.RDS
    Ignored:    data/my_hc_filt_counts_n45.RDS
    Ignored:    data/n45_bedfiles/
    Ignored:    data/n45_files
    Ignored:    data/other_papers/
    Ignored:    data/peakAnnoList_1.RDS
    Ignored:    data/peakAnnoList_2.RDS
    Ignored:    data/peakAnnoList_24_full.RDS
    Ignored:    data/peakAnnoList_24_n45.RDS
    Ignored:    data/peakAnnoList_3.RDS
    Ignored:    data/peakAnnoList_3_full.RDS
    Ignored:    data/peakAnnoList_3_n45.RDS
    Ignored:    data/peakAnnoList_4.RDS
    Ignored:    data/peakAnnoList_5.RDS
    Ignored:    data/peakAnnoList_6.RDS
    Ignored:    data/peakAnnoList_Eight.RDS
    Ignored:    data/peakAnnoList_full_motif.RDS
    Ignored:    data/peakAnnoList_n45_motif.RDS
    Ignored:    data/siglist_full.RDS
    Ignored:    data/siglist_n45.RDS
    Ignored:    data/summarized_peaks_dataframe.txt
    Ignored:    data/summary_peakIDandReHeat.csv
    Ignored:    data/test.list.RDS
    Ignored:    data/testnames.txt
    Ignored:    data/toplist_6.RDS
    Ignored:    data/toplist_full.RDS
    Ignored:    data/toplist_full_DAR_6.RDS
    Ignored:    data/toplist_n45.RDS
    Ignored:    data/trimmed_seq_length.csv
    Ignored:    data/unclassified_full_set_peaks.RDS
    Ignored:    data/unclassified_n45_set_peaks.RDS
    Ignored:    data/xstreme/

Untracked files:
    Untracked:  RNA_seq_integration.Rmd
    Untracked:  analysis/.gitignore
    Untracked:  analysis/Diagnosis-tmm.Rmd
    Untracked:  analysis/Expressed_RNA_associations.Rmd
    Untracked:  analysis/LFC_corr.Rmd
    Untracked:  analysis/SVA.Rmd
    Untracked:  analysis/Tan2020.Rmd
    Untracked:  analysis/making_master_peaks_list.Rmd
    Untracked:  analysis/my_hc_filt_counts.csv
    Untracked:  code/IGV_snapshot_code.R
    Untracked:  code/LongDARlist.R
    Untracked:  code/just_for_Fun.R
    Untracked:  output/cormotif_probability_45_list.csv
    Untracked:  output/cormotif_probability_all_6_list.csv
    Untracked:  setup.RData

Unstaged changes:
    Modified:   ATAC_learning.Rproj
    Modified:   analysis/AF_HF_SNPs.Rmd
    Modified:   analysis/Cardiotox_SNPs.Rmd
    Modified:   analysis/H3K27ac_cormotif.Rmd
    Modified:   analysis/Jaspar_motif.Rmd
    Modified:   analysis/Jaspar_motif_ff.Rmd
    Modified:   analysis/RNA_seq_integration.Rmd
    Modified:   analysis/final_four_analysis.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/TSS_and_CUG.Rmd) and HTML (docs/TSS_and_CUG.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd b62ef0b reneeisnowhere 2025-05-15 updates and verification of runs
html 5e6e462 reneeisnowhere 2025-05-07 Build site.
Rmd 2db35c7 reneeisnowhere 2025-05-07 updates to analysis

library(tidyverse)
library(kableExtra)
library(broom)
library(RColorBrewer)
library(ChIPseeker)
library("TxDb.Hsapiens.UCSC.hg38.knownGene")
library("org.Hs.eg.db")
library(rtracklayer)
library(edgeR)
library(ggfortify)
library(limma)
library(readr)
library(BiocGenerics)
library(gridExtra)
library(VennDiagram)
library(scales)
library(BiocParallel)
library(ggpubr)
library(devtools)
library(biomaRt)
library(eulerr)
library(smplot2)
library(genomation)
library(ggsignif)
library(plyranges)
library(ggrepel)
library(epitools)
library(circlize)

Getting TSS locations for all genes:

txdb <- TxDb.Hsapiens.UCSC.hg38.knownGene
tss_gr <- transcripts(txdb)
tss_gr <- resize(tss_gr, width = 1, fix = "start")  # TSS is start for both strands

Loading CpG-island locations from UCSC and converting to granges

session <- browserSession("UCSC")
genome(session) <- "hg38"
cpg_table <- getTable(ucscTableQuery(session, track = "CpG Islands"))
cpg_gr <- GRanges(seqnames = cpg_table$chrom,
                  ranges = IRanges(start = cpg_table$chromStart + 1, end = cpg_table$chromEnd),
                  strand = "*")
Collapsed_peaks <- read_delim("data/Final_four_data/collapsed_new_peaks.txt",
                              delim = "\t", 
                              escape_double = FALSE, 
                              trim_ws = TRUE)

Motif_list_gr <- readRDS("data/Final_four_data/re_analysis/Motif_list_granges.RDS")
##order specific
df_list <- plyr::llply(Motif_list_gr, as.data.frame)
### no change motif_list_gr names so they do not overwrite the dataframes
names(Motif_list_gr) <- paste0(names(Motif_list_gr), "_gr")
list2env(Motif_list_gr,envir= .GlobalEnv)
<environment: R_GlobalEnv>
list2env(df_list,envir= .GlobalEnv)
<environment: R_GlobalEnv>
final_peaks <- Collapsed_peaks %>% 
  dplyr::filter(Peakid %in% mcols(all_regions_gr)$Peakid) %>% 
  GRanges()

Assess the overlap between my data sets

peaks_tss_annotated <- final_peaks %>%
  join_overlap_left(tss_gr) %>%
  mutate(TSS_status = ifelse(is.na(tx_id), "non-TSS", "TSS"))  
olap <- findOverlaps(final_peaks, cpg_gr)
peak_cpg_status <- rep("non-CpG", length(final_peaks))
  
# Mark peaks that overlap CpG islands
peak_cpg_status[unique(queryHits(olap))] <- "CpG"

final_peaks$CpG_status <- peak_cpg_status
CPG_TSS_status_df <- final_peaks %>% 
  as.data.frame() %>% 
  dplyr::select(Peakid,CpG_status) %>% 
  left_join(.,(peaks_tss_annotated %>% 
              as.data.frame() %>% 
  dplyr::select(Peakid,TSS_status) %>% 
    distinct()), by=c("Peakid"="Peakid")) %>% 
  mutate(mrc = case_when(
    Peakid %in% EAR_open$Peakid ~ "EAR_open",
    Peakid %in% EAR_close$Peakid ~ "EAR_close",
    Peakid %in% ESR_open$Peakid ~ "ESR_open",
    Peakid %in% ESR_close$Peakid ~ "ESR_close",
    Peakid %in% ESR_opcl$Peakid ~ "ESR_opcl",
    Peakid %in% LR_open$Peakid ~ "LR_open",
    Peakid %in% LR_close$Peakid ~ "LR_close",
    Peakid %in% NR$Peakid ~ "NR",
    Peakid %in% ESR_clop$Peakid ~ "ESR_clop",
    TRUE ~ "not_mrc"
  )) 
CpG_mat <- CPG_TSS_status_df %>% 
 mutate(mrc=factor(mrc, levels = c("EAR_open","ESR_open","LR_open","ESR_opcl", "EAR_close","ESR_close","LR_close","ESR_clop", "NR"))) %>% 
 dplyr::filter(mrc != "not_mrc") %>% 
  group_by(Peakid) %>%
  summarise(CpG_status = ifelse(any(CpG_status == "CpG"), "CpG_peak", "not_CpG_peak"), mrc=unique(mrc)) %>%
  ungroup() %>% 
  group_by(CpG_status, mrc) %>% 
  tally %>% 
  mutate(mrc=factor(mrc, levels = c("EAR_open","ESR_open","LR_open","ESR_opcl", "EAR_close","ESR_close","LR_close","ESR_clop", "NR"))) %>% 
  pivot_wider(id_cols = mrc, names_from = CpG_status,values_from = n) %>% 
  column_to_rownames("mrc") %>% 
     na.omit(.) %>% 
  as.matrix(.)
CpG_mat
          CpG_peak not_CpG_peak
EAR_open      1316         3583
ESR_open       783         5494
LR_open        788        24829
ESR_opcl         2          201
EAR_close       37         3038
ESR_close      351         7583
LR_close      1549        17061
NR           13639        71515
TSS_mat <- CPG_TSS_status_df %>% 
 mutate(mrc=factor(mrc, levels = c("EAR_open","ESR_open","LR_open","ESR_opcl", "EAR_close","ESR_close","LR_close","ESR_clop", "NR"))) %>% 
 dplyr::filter(mrc != "not_mrc") %>% 
  group_by(Peakid) %>%
  summarise(TSS_status = ifelse(any(TSS_status == "TSS"), "TSS_peak", "not_TSS_peak"), mrc=unique(mrc)) %>%
  ungroup() %>% 
  group_by(TSS_status, mrc) %>% 
  tally %>% 
  mutate(mrc=factor(mrc, levels = c("EAR_open","ESR_open","LR_open","ESR_opcl", "EAR_close","ESR_close","LR_close","ESR_clop", "NR"))) %>% 
  pivot_wider(id_cols = mrc, names_from = TSS_status,values_from = n) %>% 
  column_to_rownames("mrc") %>% 
     na.omit(.) %>% 
  as.matrix(.)

TSS_mat
          TSS_peak not_TSS_peak
EAR_open      1337         3562
ESR_open       578         5699
LR_open       1445        24172
ESR_opcl        10          193
EAR_close      159         2916
ESR_close      665         7269
LR_close      2071        16539
ESR_clop        25          689
NR           15183        69971

odds ratio results

matrix_list <- list("CpG"=CpG_mat,"TSS"=TSS_mat)

results_or <- data.frame(Matrix_Name = character(),
                      Row_Compared = character(),
                      Odds_Ratio = numeric(),
                      Lower_CI = numeric(),
                      Upper_CI = numeric(),
                      P_Value = numeric(),
                      stringsAsFactors = FALSE)

# Loop through each matrix in the list
for (matrix_name in names(matrix_list)) {
  current_matrix <- matrix_list[[matrix_name]]
  n_rows <- nrow(current_matrix)
  
  # Loop through each row of the current matrix (except the last row)
  for (i in 1:(n_rows - 1)) {
    # Perform odds ratio test between row i and the last row using epitools
    test_result <- tryCatch({
      contingency_table <- rbind(current_matrix[i, ], current_matrix[n_rows, ])
      
      # Check if any row in the contingency table contains only zeros
      if (any(rowSums(contingency_table) == 0)) {
        stop("Contingency table contains empty rows.")
      }
      
      oddsratio_result <- oddsratio(contingency_table)
       # Ensure the oddsratio result has at least 2 rows
      if (nrow(oddsratio_result$measure) < 2) {
        stop("oddsratio result does not have enough data.")
      }
      
     list(oddsratio = oddsratio_result, p.value = oddsratio_result$p.value[2,"chi.square"])
      
    }, error = function(e) {
      cat("Error in odds ratio test for row", i, "in matrix", matrix_name, ":", e$message, "\n")
      return(NULL)
    })
    
    # Only store the result if test_result is valid (i.e., not NULL)
    if (!is.null(test_result)) {
      or_value <- test_result$oddsratio$measure[2, "estimate"]
      lower_ci <- test_result$oddsratio$measure[2, "lower"]
      upper_ci <- test_result$oddsratio$measure[2, "upper"]
      p_value <- test_result$oddsratio$p.value[2,"chi.square"]
      
      # Check if the values are numeric and valid (not NA)
      if (!is.na(or_value) && !is.na(lower_ci) && !is.na(upper_ci) && !is.na(p_value)) {
        # Store the results in the dataframe
        results_or <- rbind(results_or, data.frame(Matrix_Name = matrix_name,
                                             Row_Compared = rownames(current_matrix)[i],
                                             Odds_Ratio = or_value,
                                             Lower_CI = lower_ci,
                                             Upper_CI = upper_ci,
                                             P_Value = p_value))
      }
    }
  }
}

# Print the resulting dataframe
print(results_or) %>% 
  kable(., caption = "Odd ratio results and significance values of TSS and CpG enrichment compared to No response group") %>% 
  kable_paper("striped", full_width = TRUE) %>%
  kable_styling(full_width = FALSE, font_size = 14) %>% 
  scroll_box(width = "100%", height = "400px")
           Matrix_Name Row_Compared Odds_Ratio    Lower_CI   Upper_CI
estimate           CpG     EAR_open 1.92597777 1.802855929 2.05633456
estimate1          CpG     ESR_open 0.74741887 0.691509768 0.80677202
estimate2          CpG      LR_open 0.16644962 0.154603250 0.17896478
estimate3          CpG     ESR_opcl 0.05619206 0.008668747 0.17429955
estimate4          CpG    EAR_close 0.06414412 0.045525224 0.08733262
estimate5          CpG    ESR_close 0.24281621 0.217444012 0.27021472
estimate6          CpG     LR_close 0.47610262 0.450407703 0.50292664
estimate7          TSS     EAR_open 1.72991067 1.620164455 1.84599655
estimate8          TSS     ESR_open 0.46752209 0.427988953 0.50971415
estimate9          TSS      LR_open 0.27553001 0.260470339 0.29126056
estimate10         TSS     ESR_opcl 0.24250730 0.119554510 0.43398244
estimate11         TSS    EAR_close 0.25154837 0.213387053 0.29427899
estimate12         TSS    ESR_close 0.42171208 0.388410369 0.45705409
estimate13         TSS     LR_close 0.57711710 0.549429034 0.60591901
estimate14         TSS     ESR_clop 0.16828570 0.109862297 0.24523928
                 P_Value
estimate    1.450783e-87
estimate1   1.072886e-13
estimate2   0.000000e+00
estimate3   5.291085e-09
estimate4  3.803627e-110
estimate5  3.973011e-168
estimate6  2.364549e-159
estimate7   3.683755e-62
estimate8   3.264184e-68
estimate9   0.000000e+00
estimate10  1.580337e-06
estimate11  5.555494e-74
estimate12 9.408337e-102
estimate13 1.306899e-109
estimate14  1.731729e-23
Odd ratio results and significance values of TSS and CpG enrichment compared to No response group
Matrix_Name Row_Compared Odds_Ratio Lower_CI Upper_CI P_Value
estimate CpG EAR_open 1.9259778 1.8028559 2.0563346 0.0e+00
estimate1 CpG ESR_open 0.7474189 0.6915098 0.8067720 0.0e+00
estimate2 CpG LR_open 0.1664496 0.1546032 0.1789648 0.0e+00
estimate3 CpG ESR_opcl 0.0561921 0.0086687 0.1742996 0.0e+00
estimate4 CpG EAR_close 0.0641441 0.0455252 0.0873326 0.0e+00
estimate5 CpG ESR_close 0.2428162 0.2174440 0.2702147 0.0e+00
estimate6 CpG LR_close 0.4761026 0.4504077 0.5029266 0.0e+00
estimate7 TSS EAR_open 1.7299107 1.6201645 1.8459966 0.0e+00
estimate8 TSS ESR_open 0.4675221 0.4279890 0.5097142 0.0e+00
estimate9 TSS LR_open 0.2755300 0.2604703 0.2912606 0.0e+00
estimate10 TSS ESR_opcl 0.2425073 0.1195545 0.4339824 1.6e-06
estimate11 TSS EAR_close 0.2515484 0.2133871 0.2942790 0.0e+00
estimate12 TSS ESR_close 0.4217121 0.3884104 0.4570541 0.0e+00
estimate13 TSS LR_close 0.5771171 0.5494290 0.6059190 0.0e+00
estimate14 TSS ESR_clop 0.1682857 0.1098623 0.2452393 0.0e+00
col_fun_OR = colorRamp2(c(0,1,1.5,5), c("blueviolet","white","lightgreen","green3" ))
sig_mat_OR <- results_or %>% 
  as.data.frame() %>% 
  dplyr::select( Matrix_Name,Row_Compared,P_Value) %>%
  group_by(Row_Compared) %>%
  mutate(rank_val=rank(P_Value, ties.method = "first")) %>%
  mutate(BH_correction= p.adjust(P_Value,method= "BH")) %>% 
  pivot_wider(., id_cols = Matrix_Name, names_from = Row_Compared, values_from = BH_correction) %>% 
  dplyr::select(Matrix_Name,EAR_open,ESR_open,LR_open,ESR_opcl,EAR_close,ESR_close,LR_close,ESR_clop) %>%
  column_to_rownames("Matrix_Name") %>% 
  as.matrix() 

# saveRDS(results_or,"data/Final_four_data/re_analysis/OR_results_TSS_CpG_df_1bp.RDS")
results_or %>% 
  as.data.frame() %>% 
  dplyr::select( Matrix_Name,Row_Compared,Odds_Ratio) %>% 
  pivot_wider(., id_cols = Matrix_Name, names_from = Row_Compared, values_from = Odds_Ratio) %>% 
  dplyr::select(Matrix_Name,EAR_open,ESR_open,LR_open,ESR_opcl,EAR_close,ESR_close,LR_close,ESR_clop) %>%
  column_to_rownames("Matrix_Name") %>% 
  as.matrix() %>% 
  ComplexHeatmap::Heatmap(. ,col = col_fun_OR, 
                          cluster_rows=FALSE, 
                          cluster_columns=FALSE, 
                          column_names_side = "top", 
                          column_names_rot = 45,
                          # na_col = "black",
                          cell_fun = function(j, i, x, y, width, height, fill) {if (!is.na(sig_mat_OR[i, j]) && sig_mat_OR[i, j] < 0.05  && .[i, j] > 1) {
            grid.text("*", x, y, gp = gpar(fontsize = 20))}})

Version Author Date
5e6e462 reneeisnowhere 2025-05-07

note, this is corrected for multiple testing across TSS and CUG tests only in each motif cluster.


sessionInfo()
R version 4.4.2 (2024-10-31 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 26100)

Matrix products: default


locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

time zone: America/Chicago
tzcode source: internal

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] circlize_0.4.16                         
 [2] epitools_0.5-10.1                       
 [3] ggrepel_0.9.6                           
 [4] plyranges_1.26.0                        
 [5] ggsignif_0.6.4                          
 [6] genomation_1.38.0                       
 [7] smplot2_0.2.5                           
 [8] eulerr_7.0.2                            
 [9] biomaRt_2.62.1                          
[10] devtools_2.4.5                          
[11] usethis_3.1.0                           
[12] ggpubr_0.6.0                            
[13] BiocParallel_1.40.0                     
[14] scales_1.3.0                            
[15] VennDiagram_1.7.3                       
[16] futile.logger_1.4.3                     
[17] gridExtra_2.3                           
[18] ggfortify_0.4.17                        
[19] edgeR_4.4.2                             
[20] limma_3.62.2                            
[21] rtracklayer_1.66.0                      
[22] org.Hs.eg.db_3.20.0                     
[23] TxDb.Hsapiens.UCSC.hg38.knownGene_3.20.0
[24] GenomicFeatures_1.58.0                  
[25] AnnotationDbi_1.68.0                    
[26] Biobase_2.66.0                          
[27] GenomicRanges_1.58.0                    
[28] GenomeInfoDb_1.42.3                     
[29] IRanges_2.40.1                          
[30] S4Vectors_0.44.0                        
[31] BiocGenerics_0.52.0                     
[32] ChIPseeker_1.42.1                       
[33] RColorBrewer_1.1-3                      
[34] broom_1.0.7                             
[35] kableExtra_1.4.0                        
[36] lubridate_1.9.4                         
[37] forcats_1.0.0                           
[38] stringr_1.5.1                           
[39] dplyr_1.1.4                             
[40] purrr_1.0.4                             
[41] readr_2.1.5                             
[42] tidyr_1.3.1                             
[43] tibble_3.2.1                            
[44] ggplot2_3.5.1                           
[45] tidyverse_2.0.0                         
[46] workflowr_1.7.1                         

loaded via a namespace (and not attached):
  [1] fs_1.6.5                               
  [2] matrixStats_1.5.0                      
  [3] bitops_1.0-9                           
  [4] enrichplot_1.26.6                      
  [5] doParallel_1.0.17                      
  [6] httr_1.4.7                             
  [7] profvis_0.4.0                          
  [8] tools_4.4.2                            
  [9] backports_1.5.0                        
 [10] R6_2.6.1                               
 [11] lazyeval_0.2.2                         
 [12] GetoptLong_1.0.5                       
 [13] urlchecker_1.0.1                       
 [14] withr_3.0.2                            
 [15] prettyunits_1.2.0                      
 [16] cli_3.6.4                              
 [17] formatR_1.14                           
 [18] Cairo_1.6-2                            
 [19] sass_0.4.9                             
 [20] Rsamtools_2.22.0                       
 [21] systemfonts_1.2.1                      
 [22] yulab.utils_0.2.0                      
 [23] foreign_0.8-88                         
 [24] DOSE_4.0.0                             
 [25] svglite_2.1.3                          
 [26] R.utils_2.13.0                         
 [27] sessioninfo_1.2.3                      
 [28] plotrix_3.8-4                          
 [29] BSgenome_1.74.0                        
 [30] pwr_1.3-0                              
 [31] impute_1.80.0                          
 [32] rstudioapi_0.17.1                      
 [33] RSQLite_2.3.9                          
 [34] shape_1.4.6.1                          
 [35] generics_0.1.3                         
 [36] gridGraphics_0.5-1                     
 [37] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
 [38] BiocIO_1.16.0                          
 [39] vroom_1.6.5                            
 [40] gtools_3.9.5                           
 [41] car_3.1-3                              
 [42] GO.db_3.20.0                           
 [43] Matrix_1.7-3                           
 [44] abind_1.4-8                            
 [45] R.methodsS3_1.8.2                      
 [46] lifecycle_1.0.4                        
 [47] whisker_0.4.1                          
 [48] yaml_2.3.10                            
 [49] carData_3.0-5                          
 [50] SummarizedExperiment_1.36.0            
 [51] gplots_3.2.0                           
 [52] qvalue_2.38.0                          
 [53] SparseArray_1.6.2                      
 [54] BiocFileCache_2.14.0                   
 [55] blob_1.2.4                             
 [56] promises_1.3.2                         
 [57] crayon_1.5.3                           
 [58] miniUI_0.1.1.1                         
 [59] ggtangle_0.0.6                         
 [60] lattice_0.22-6                         
 [61] cowplot_1.1.3                          
 [62] KEGGREST_1.46.0                        
 [63] magick_2.8.5                           
 [64] ComplexHeatmap_2.22.0                  
 [65] pillar_1.10.1                          
 [66] knitr_1.49                             
 [67] fgsea_1.32.2                           
 [68] rjson_0.2.23                           
 [69] boot_1.3-31                            
 [70] codetools_0.2-20                       
 [71] fastmatch_1.1-6                        
 [72] glue_1.8.0                             
 [73] getPass_0.2-4                          
 [74] ggfun_0.1.8                            
 [75] data.table_1.17.0                      
 [76] remotes_2.5.0                          
 [77] vctrs_0.6.5                            
 [78] png_0.1-8                              
 [79] treeio_1.30.0                          
 [80] gtable_0.3.6                           
 [81] cachem_1.1.0                           
 [82] xfun_0.51                              
 [83] S4Arrays_1.6.0                         
 [84] mime_0.12                              
 [85] iterators_1.0.14                       
 [86] statmod_1.5.0                          
 [87] ellipsis_0.3.2                         
 [88] nlme_3.1-167                           
 [89] ggtree_3.14.0                          
 [90] bit64_4.6.0-1                          
 [91] filelock_1.0.3                         
 [92] progress_1.2.3                         
 [93] rprojroot_2.0.4                        
 [94] bslib_0.9.0                            
 [95] rpart_4.1.24                           
 [96] KernSmooth_2.23-26                     
 [97] Hmisc_5.2-2                            
 [98] colorspace_2.1-1                       
 [99] DBI_1.2.3                              
[100] seqPattern_1.38.0                      
[101] nnet_7.3-20                            
[102] tidyselect_1.2.1                       
[103] processx_3.8.6                         
[104] bit_4.6.0                              
[105] compiler_4.4.2                         
[106] curl_6.2.1                             
[107] git2r_0.35.0                           
[108] httr2_1.1.1                            
[109] htmlTable_2.4.3                        
[110] xml2_1.3.7                             
[111] DelayedArray_0.32.0                    
[112] checkmate_2.3.2                        
[113] caTools_1.18.3                         
[114] callr_3.7.6                            
[115] rappdirs_0.3.3                         
[116] digest_0.6.37                          
[117] rmarkdown_2.29                         
[118] XVector_0.46.0                         
[119] base64enc_0.1-3                        
[120] htmltools_0.5.8.1                      
[121] pkgconfig_2.0.3                        
[122] MatrixGenerics_1.18.1                  
[123] dbplyr_2.5.0                           
[124] fastmap_1.2.0                          
[125] GlobalOptions_0.1.2                    
[126] rlang_1.1.5                            
[127] htmlwidgets_1.6.4                      
[128] UCSC.utils_1.2.0                       
[129] shiny_1.10.0                           
[130] farver_2.1.2                           
[131] jquerylib_0.1.4                        
[132] zoo_1.8-13                             
[133] jsonlite_1.9.1                         
[134] GOSemSim_2.32.0                        
[135] R.oo_1.27.0                            
[136] RCurl_1.98-1.16                        
[137] magrittr_2.0.3                         
[138] Formula_1.2-5                          
[139] GenomeInfoDbData_1.2.13                
[140] ggplotify_0.1.2                        
[141] patchwork_1.3.0                        
[142] munsell_0.5.1                          
[143] Rcpp_1.0.14                            
[144] ape_5.8-1                              
[145] stringi_1.8.4                          
[146] zlibbioc_1.52.0                        
[147] plyr_1.8.9                             
[148] pkgbuild_1.4.6                         
[149] parallel_4.4.2                         
[150] Biostrings_2.74.1                      
[151] splines_4.4.2                          
[152] hms_1.1.3                              
[153] locfit_1.5-9.12                        
[154] ps_1.9.0                               
[155] igraph_2.1.4                           
[156] reshape2_1.4.4                         
[157] pkgload_1.4.0                          
[158] futile.options_1.0.1                   
[159] XML_3.99-0.18                          
[160] evaluate_1.0.3                         
[161] lambda.r_1.2.4                         
[162] foreach_1.5.2                          
[163] tzdb_0.4.0                             
[164] httpuv_1.6.15                          
[165] clue_0.3-66                            
[166] gridBase_0.4-7                         
[167] xtable_1.8-4                           
[168] restfulr_0.0.15                        
[169] tidytree_0.4.6                         
[170] rstatix_0.7.2                          
[171] later_1.4.1                            
[172] viridisLite_0.4.2                      
[173] aplot_0.2.5                            
[174] memoise_2.0.1                          
[175] GenomicAlignments_1.42.0               
[176] cluster_2.1.8.1                        
[177] timechange_0.3.0