Last updated: 2025-06-18

Checks: 7 0

Knit directory: ATAC_learning/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20231016) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version c78c973. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/H3K27ac_integration_noM.Rmd
    Ignored:    data/ACresp_SNP_table.csv
    Ignored:    data/ARR_SNP_table.csv
    Ignored:    data/All_merged_peaks.tsv
    Ignored:    data/CAD_gwas_dataframe.RDS
    Ignored:    data/CTX_SNP_table.csv
    Ignored:    data/Collapsed_expressed_NG_peak_table.csv
    Ignored:    data/DEG_toplist_sep_n45.RDS
    Ignored:    data/FRiP_first_run.txt
    Ignored:    data/Final_four_data/
    Ignored:    data/Frip_1_reads.csv
    Ignored:    data/Frip_2_reads.csv
    Ignored:    data/Frip_3_reads.csv
    Ignored:    data/Frip_4_reads.csv
    Ignored:    data/Frip_5_reads.csv
    Ignored:    data/Frip_6_reads.csv
    Ignored:    data/GO_KEGG_analysis/
    Ignored:    data/HF_SNP_table.csv
    Ignored:    data/Ind1_75DA24h_dedup_peaks.csv
    Ignored:    data/Ind1_TSS_peaks.RDS
    Ignored:    data/Ind1_firstfragment_files.txt
    Ignored:    data/Ind1_fragment_files.txt
    Ignored:    data/Ind1_peaks_list.RDS
    Ignored:    data/Ind1_summary.txt
    Ignored:    data/Ind2_TSS_peaks.RDS
    Ignored:    data/Ind2_fragment_files.txt
    Ignored:    data/Ind2_peaks_list.RDS
    Ignored:    data/Ind2_summary.txt
    Ignored:    data/Ind3_TSS_peaks.RDS
    Ignored:    data/Ind3_fragment_files.txt
    Ignored:    data/Ind3_peaks_list.RDS
    Ignored:    data/Ind3_summary.txt
    Ignored:    data/Ind4_79B24h_dedup_peaks.csv
    Ignored:    data/Ind4_TSS_peaks.RDS
    Ignored:    data/Ind4_V24h_fraglength.txt
    Ignored:    data/Ind4_fragment_files.txt
    Ignored:    data/Ind4_fragment_filesN.txt
    Ignored:    data/Ind4_peaks_list.RDS
    Ignored:    data/Ind4_summary.txt
    Ignored:    data/Ind5_TSS_peaks.RDS
    Ignored:    data/Ind5_fragment_files.txt
    Ignored:    data/Ind5_fragment_filesN.txt
    Ignored:    data/Ind5_peaks_list.RDS
    Ignored:    data/Ind5_summary.txt
    Ignored:    data/Ind6_TSS_peaks.RDS
    Ignored:    data/Ind6_fragment_files.txt
    Ignored:    data/Ind6_peaks_list.RDS
    Ignored:    data/Ind6_summary.txt
    Ignored:    data/Knowles_4.RDS
    Ignored:    data/Knowles_5.RDS
    Ignored:    data/Knowles_6.RDS
    Ignored:    data/LiSiLTDNRe_TE_df.RDS
    Ignored:    data/MI_gwas.RDS
    Ignored:    data/SNP_GWAS_PEAK_MRC_id
    Ignored:    data/SNP_GWAS_PEAK_MRC_id.csv
    Ignored:    data/SNP_gene_cat_list.tsv
    Ignored:    data/SNP_supp_schneider.RDS
    Ignored:    data/TE_info/
    Ignored:    data/TFmapnames.RDS
    Ignored:    data/all_TSSE_scores.RDS
    Ignored:    data/all_four_filtered_counts.txt
    Ignored:    data/aln_run1_results.txt
    Ignored:    data/anno_ind1_DA24h.RDS
    Ignored:    data/anno_ind4_V24h.RDS
    Ignored:    data/annotated_gwas_SNPS.csv
    Ignored:    data/background_n45_he_peaks.RDS
    Ignored:    data/cardiac_muscle_FRIP.csv
    Ignored:    data/cardiomyocyte_FRIP.csv
    Ignored:    data/col_ng_peak.csv
    Ignored:    data/cormotif_full_4_run.RDS
    Ignored:    data/cormotif_full_4_run_he.RDS
    Ignored:    data/cormotif_full_6_run.RDS
    Ignored:    data/cormotif_full_6_run_he.RDS
    Ignored:    data/cormotif_probability_45_list.csv
    Ignored:    data/cormotif_probability_45_list_he.csv
    Ignored:    data/cormotif_probability_all_6_list.csv
    Ignored:    data/cormotif_probability_all_6_list_he.csv
    Ignored:    data/datasave.RDS
    Ignored:    data/embryo_heart_FRIP.csv
    Ignored:    data/enhancer_list_ENCFF126UHK.bed
    Ignored:    data/enhancerdata/
    Ignored:    data/filt_Peaks_efit2.RDS
    Ignored:    data/filt_Peaks_efit2_bl.RDS
    Ignored:    data/filt_Peaks_efit2_n45.RDS
    Ignored:    data/first_Peaksummarycounts.csv
    Ignored:    data/first_run_frag_counts.txt
    Ignored:    data/full_bedfiles/
    Ignored:    data/gene_ref.csv
    Ignored:    data/gwas_1_dataframe.RDS
    Ignored:    data/gwas_2_dataframe.RDS
    Ignored:    data/gwas_3_dataframe.RDS
    Ignored:    data/gwas_4_dataframe.RDS
    Ignored:    data/gwas_5_dataframe.RDS
    Ignored:    data/high_conf_peak_counts.csv
    Ignored:    data/high_conf_peak_counts.txt
    Ignored:    data/high_conf_peaks_bl_counts.txt
    Ignored:    data/high_conf_peaks_counts.txt
    Ignored:    data/hits_files/
    Ignored:    data/hyper_files/
    Ignored:    data/hypo_files/
    Ignored:    data/ind1_DA24hpeaks.RDS
    Ignored:    data/ind1_TSSE.RDS
    Ignored:    data/ind2_TSSE.RDS
    Ignored:    data/ind3_TSSE.RDS
    Ignored:    data/ind4_TSSE.RDS
    Ignored:    data/ind4_V24hpeaks.RDS
    Ignored:    data/ind5_TSSE.RDS
    Ignored:    data/ind6_TSSE.RDS
    Ignored:    data/initial_complete_stats_run1.txt
    Ignored:    data/left_ventricle_FRIP.csv
    Ignored:    data/median_24_lfc.RDS
    Ignored:    data/median_3_lfc.RDS
    Ignored:    data/mergedPeads.gff
    Ignored:    data/mergedPeaks.gff
    Ignored:    data/motif_list_full
    Ignored:    data/motif_list_n45
    Ignored:    data/motif_list_n45.RDS
    Ignored:    data/multiqc_fastqc_run1.txt
    Ignored:    data/multiqc_fastqc_run2.txt
    Ignored:    data/multiqc_genestat_run1.txt
    Ignored:    data/multiqc_genestat_run2.txt
    Ignored:    data/my_hc_filt_counts.RDS
    Ignored:    data/my_hc_filt_counts_n45.RDS
    Ignored:    data/n45_bedfiles/
    Ignored:    data/n45_files
    Ignored:    data/other_papers/
    Ignored:    data/peakAnnoList_1.RDS
    Ignored:    data/peakAnnoList_2.RDS
    Ignored:    data/peakAnnoList_24_full.RDS
    Ignored:    data/peakAnnoList_24_n45.RDS
    Ignored:    data/peakAnnoList_3.RDS
    Ignored:    data/peakAnnoList_3_full.RDS
    Ignored:    data/peakAnnoList_3_n45.RDS
    Ignored:    data/peakAnnoList_4.RDS
    Ignored:    data/peakAnnoList_5.RDS
    Ignored:    data/peakAnnoList_6.RDS
    Ignored:    data/peakAnnoList_Eight.RDS
    Ignored:    data/peakAnnoList_full_motif.RDS
    Ignored:    data/peakAnnoList_n45_motif.RDS
    Ignored:    data/siglist_full.RDS
    Ignored:    data/siglist_n45.RDS
    Ignored:    data/summarized_peaks_dataframe.txt
    Ignored:    data/summary_peakIDandReHeat.csv
    Ignored:    data/test.list.RDS
    Ignored:    data/testnames.txt
    Ignored:    data/toplist_6.RDS
    Ignored:    data/toplist_full.RDS
    Ignored:    data/toplist_full_DAR_6.RDS
    Ignored:    data/toplist_n45.RDS
    Ignored:    data/trimmed_seq_length.csv
    Ignored:    data/unclassified_full_set_peaks.RDS
    Ignored:    data/unclassified_n45_set_peaks.RDS
    Ignored:    data/xstreme/

Untracked files:
    Untracked:  RNA_seq_integration.Rmd
    Untracked:  Rplot.pdf
    Untracked:  Sig_meta
    Untracked:  analysis/.gitignore
    Untracked:  analysis/AC_shared_analysis.Rmd
    Untracked:  analysis/Cormotif_analysis_testing diff.Rmd
    Untracked:  analysis/Diagnosis-tmm.Rmd
    Untracked:  analysis/Expressed_RNA_associations.Rmd
    Untracked:  analysis/GO_analysis_DAR.Rmd
    Untracked:  analysis/Jaspar_motif_DAR.Rmd
    Untracked:  analysis/LFC_corr.Rmd
    Untracked:  analysis/SNP_TAD_peaks.Rmd
    Untracked:  analysis/SVA.Rmd
    Untracked:  analysis/Tan2020.Rmd
    Untracked:  analysis/Top2B_analysis.Rmd
    Untracked:  analysis/making_master_peaks_list.Rmd
    Untracked:  analysis/my_hc_filt_counts.csv
    Untracked:  code/Concatenations_for_export.R
    Untracked:  code/IGV_snapshot_code.R
    Untracked:  code/LongDARlist.R
    Untracked:  code/just_for_Fun.R
    Untracked:  my_plot.pdf
    Untracked:  my_plot.png
    Untracked:  output/cormotif_probability_45_list.csv
    Untracked:  output/cormotif_probability_all_6_list.csv
    Untracked:  setup.RData

Unstaged changes:
    Modified:   ATAC_learning.Rproj
    Modified:   analysis/AF_HF_SNPs.Rmd
    Modified:   analysis/Cardiotox_SNPs.Rmd
    Modified:   analysis/Cormotif_analysis.Rmd
    Modified:   analysis/DEG_analysis.Rmd
    Modified:   analysis/H3K27ac_initial_QC.Rmd
    Modified:   analysis/Jaspar_motif.Rmd
    Modified:   analysis/Jaspar_motif_ff.Rmd
    Modified:   analysis/TE_analysis_norm.Rmd
    Modified:   analysis/final_four_analysis.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/TSS_and_CUG_ALL_DAR.Rmd) and HTML (docs/TSS_and_CUG_ALL_DAR.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd c78c973 reneeisnowhere 2025-06-18 updates using all trts

library(tidyverse)
library(kableExtra)
library(broom)
library(RColorBrewer)
library(ChIPseeker)
library("TxDb.Hsapiens.UCSC.hg38.knownGene")
library("org.Hs.eg.db")
library(rtracklayer)
library(edgeR)
library(ggfortify)
library(limma)
library(readr)
library(BiocGenerics)
library(gridExtra)
library(VennDiagram)
library(scales)
library(BiocParallel)
library(ggpubr)
library(devtools)
library(biomaRt)
library(eulerr)
library(smplot2)
library(genomation)
library(ggsignif)
library(plyranges)
library(ggrepel)
library(epitools)
library(circlize)

Getting TSS locations for all genes:

txdb <- TxDb.Hsapiens.UCSC.hg38.knownGene
tss_gr <- transcripts(txdb)
tss_gr <- resize(tss_gr, width = 1, fix = "start")  # TSS is start for both strands

Loading CpG-island locations from UCSC and converting to granges

session <- browserSession("UCSC")
genome(session) <- "hg38"
cpg_table <- getTable(ucscTableQuery(session, track = "CpG Islands"))
cpg_gr <- GRanges(seqnames = cpg_table$chrom,
                  ranges = IRanges(start = cpg_table$chromStart + 1, end = cpg_table$chromEnd),
                  strand = "*")

Loading region data

Collapsed_peaks <- read_delim("data/Final_four_data/collapsed_new_peaks.txt",
                              delim = "\t", 
                              escape_double = FALSE, 
                              trim_ws = TRUE)

toptable_results <- readRDS("data/Final_four_data/re_analysis/Toptable_results.RDS")
all_regions <- toptable_results$DOX_24$genes

Collapsed_peaks <- read_delim("data/Final_four_data/collapsed_new_peaks.txt",
                              delim = "\t", 
                              escape_double = FALSE, 
                              trim_ws = TRUE)

final_peaks <- Collapsed_peaks %>% 
  dplyr::filter(chr != "chrY") %>%
  dplyr::filter(Peakid %in% all_regions) %>% 
  GRanges()

all_results  <- toptable_results %>%
  imap(~ .x %>% tibble::rownames_to_column(var = "rowname") %>%
         mutate(source = .y)) %>%
  bind_rows()

my_DOX_data <- all_results %>% 
  dplyr::filter(source=="DOX_3"|source=="DOX_24") %>% 
  dplyr::select(source,genes,logFC,adj.P.Val) %>% 
  pivot_wider(.,id_cols=genes,names_from = source, values_from = c(logFC, adj.P.Val))

my_EPI_data <- all_results %>% 
  dplyr::filter(source=="EPI_3"|source=="EPI_24") %>% 
  dplyr::select(source,genes,logFC,adj.P.Val) %>% 
  pivot_wider(.,id_cols=genes,names_from = source, values_from = c(logFC, adj.P.Val))

my_DNR_data <- all_results %>% 
  dplyr::filter(source=="DNR_3"|source=="DNR_24") %>% 
  dplyr::select(source,genes,logFC,adj.P.Val) %>% 
  pivot_wider(.,id_cols=genes,names_from = source, values_from = c(logFC, adj.P.Val))

my_MTX_data <- all_results %>% 
  dplyr::filter(source=="MTX_3"|source=="MTX_24") %>% 
  dplyr::select(source,genes,logFC,adj.P.Val) %>% 
  pivot_wider(.,id_cols=genes,names_from = source, values_from = c(logFC, adj.P.Val))

Assess the overlap between my data sets

peaks_tss_annotated <- final_peaks %>%
  join_overlap_left(tss_gr) %>%
  mutate(TSS_status = ifelse(is.na(tx_id), "non-TSS", "TSS"))  
olap <- findOverlaps(final_peaks, cpg_gr)
peak_cpg_status <- rep("non-CpG", length(final_peaks))
  
# Mark peaks that overlap CpG islands
peak_cpg_status[unique(queryHits(olap))] <- "CpG"

final_peaks$CpG_status <- peak_cpg_status
all_results  <- toptable_results %>%
  imap(~ .x %>% tibble::rownames_to_column(var = "rowname") %>%
         mutate(source = .y)) %>%
  bind_rows()


CPG_TSS_status_df <- final_peaks %>%
  as.data.frame() %>% 
  dplyr::select(Peakid,CpG_status) %>% 
  left_join(.,(peaks_tss_annotated %>% 
              as.data.frame() %>% 
  dplyr::select(Peakid,TSS_status) %>% 
    distinct()), by=c("Peakid"="Peakid")) %>% 
  left_join(.,my_DOX_data,by=c("Peakid"="genes")) %>% 
  mutate(DOX_sig_3=if_else(adj.P.Val_DOX_3<0.05,"sig","not_sig"),
         DOX_sig_24=if_else(adj.P.Val_DOX_24<0.05,"sig","not_sig")) %>% 
  mutate(DOX_sig_3=factor(DOX_sig_3,levels=c("sig","not_sig")),
         DOX_sig_24=factor(DOX_sig_24,levels=c("sig","not_sig"))) %>% 
  left_join(.,my_EPI_data,by=c("Peakid"="genes")) %>% 
  mutate(EPI_sig_3=if_else(adj.P.Val_EPI_3<0.05,"sig","not_sig"),
         EPI_sig_24=if_else(adj.P.Val_EPI_24<0.05,"sig","not_sig")) %>% 
  mutate(EPI_sig_3=factor(EPI_sig_3,levels=c("sig","not_sig")),
         EPI_sig_24=factor(EPI_sig_24,levels=c("sig","not_sig"))) %>% 
  left_join(.,my_DNR_data,by=c("Peakid"="genes")) %>% 
  mutate(DNR_sig_3=if_else(adj.P.Val_DNR_3<0.05,"sig","not_sig"),
         DNR_sig_24=if_else(adj.P.Val_DNR_24<0.05,"sig","not_sig")) %>% 
  mutate(DNR_sig_3=factor(DNR_sig_3,levels=c("sig","not_sig")),
         DNR_sig_24=factor(DNR_sig_24,levels=c("sig","not_sig"))) %>% 
  left_join(.,my_MTX_data,by=c("Peakid"="genes")) %>% 
  mutate(MTX_sig_3=if_else(adj.P.Val_MTX_3<0.05,"sig","not_sig"),
         MTX_sig_24=if_else(adj.P.Val_MTX_24<0.05,"sig","not_sig")) %>% 
  mutate(MTX_sig_3=factor(MTX_sig_3,levels=c("sig","not_sig")),
         MTX_sig_24=factor(MTX_sig_24,levels=c("sig","not_sig"))) 


CPG_TSS_status_df %>% 
  group_by(CpG_status,DOX_sig_3) %>% 
  tally()
# A tibble: 4 × 3
# Groups:   CpG_status [2]
  CpG_status DOX_sig_3      n
  <chr>      <fct>      <int>
1 CpG        sig          377
2 CpG        not_sig    18392
3 non-CpG    sig         3096
4 non-CpG    not_sig   133692

DOX

status_columns <- c("CpG_status", "TSS_status")
DOX_3_status_matrices <- map(status_columns, function(status_col) {
  # Extract prefix (e.g., "TE", "SINE") from column name like "TE_status"
  prefix <- sub("_status$", "", status_col)
  expected_rows <- c(paste0(prefix), paste0("non-", prefix))
  expected_cols <- c("sig", "not_sig")
  
  # Build matrix
  mat <- CPG_TSS_status_df %>%
    group_by(across(all_of(status_col)), DOX_sig_3) %>%
    tally() %>%
    pivot_wider(
      names_from = DOX_sig_3,
      values_from = n,
      values_fill = list(n = 0)
    ) %>%
    column_to_rownames(var = status_col) %>%
    as.matrix()
  
  # Fill missing expected rows
  for (r in setdiff(expected_rows, rownames(mat))) {
    mat <- rbind(mat, setNames(rep(0, length(expected_cols)), expected_cols))
    rownames(mat)[nrow(mat)] <- r
  }

  # Fill missing expected columns
  for (c in setdiff(expected_cols, colnames(mat))) {
    mat <- cbind(mat, setNames(rep(0, nrow(mat)), c))
  }

  # Order
  mat <- mat[expected_rows, expected_cols, drop = FALSE]
})

# Set names so you can easily refer to each status
names(DOX_3_status_matrices) <- status_columns


odds_ratio_results_DOX_3 <- map(DOX_3_status_matrices, function(mat) {
  if (!all(dim(mat) == c(2, 2)) || any(!is.finite(mat)) || sum(mat) == 0 || any(rowSums(mat) == 0) || any(colSums(mat) == 0)) {
    return(NULL)
  }
  
  result <- epitools::oddsratio(mat, method = "wald")
  
  or <- result$measure[2, "estimate"]
  lower <- result$measure[2, "lower"]
  upper <- result$measure[2, "upper"]
  
  pval_chisq <- if("chi.square" %in% colnames(result$p.value) && nrow(result$p.value) >= 2) {
    result$p.value[2, "chi.square"]
  } else {
    NA_real_
  }
  
  list(
    odds_ratio = or,
    lower_ci = lower,
    upper_ci = upper,
    chi_sq_p = pval_chisq
  )
})
DOX_24_status_matrices <- map(status_columns, function(status_col) {
  # Extract prefix (e.g., "TE", "SINE") from column name like "TE_status"
  prefix <- sub("_status$", "", status_col)
  expected_rows <- c(paste0(prefix), paste0("non-", prefix))
  expected_cols <- c("sig", "not_sig")
  
  # Build matrix
  mat <- CPG_TSS_status_df %>%
    group_by(across(all_of(status_col)), DOX_sig_24) %>%
    tally() %>%
    pivot_wider(
      names_from = DOX_sig_24,
      values_from = n,
      values_fill = list(n = 0)
    ) %>%
    column_to_rownames(var = status_col) %>%
    as.matrix()
  
  # Fill missing expected rows
  for (r in setdiff(expected_rows, rownames(mat))) {
    mat <- rbind(mat, setNames(rep(0, length(expected_cols)), expected_cols))
    rownames(mat)[nrow(mat)] <- r
  }

  # Fill missing expected columns
  for (c in setdiff(expected_cols, colnames(mat))) {
    mat <- cbind(mat, setNames(rep(0, nrow(mat)), c))
  }

  # Order
  mat <- mat[expected_rows, expected_cols, drop = FALSE]
})

# Set names so you can easily refer to each status
names(DOX_24_status_matrices) <- status_columns


odds_ratio_results_DOX_24 <- map(DOX_24_status_matrices, function(mat) {
  if (!all(dim(mat) == c(2, 2)) || any(!is.finite(mat)) || sum(mat) == 0 || any(rowSums(mat) == 0) || any(colSums(mat) == 0)) {
    return(NULL)
  }
  
  result <- epitools::oddsratio(mat, method = "wald")
  
  or <- result$measure[2, "estimate"]
  lower <- result$measure[2, "lower"]
  upper <- result$measure[2, "upper"]
  
  pval_chisq <- if("chi.square" %in% colnames(result$p.value) && nrow(result$p.value) >= 2) {
    result$p.value[2, "chi.square"]
  } else {
    NA_real_
  }
  
  list(
    odds_ratio = or,
    lower_ci = lower,
    upper_ci = upper,
    chi_sq_p = pval_chisq
  )
})

EPI

status_columns <- c("CpG_status", "TSS_status")
EPI_3_status_matrices <- map(status_columns, function(status_col) {
  # Extract prefix (e.g., "TE", "SINE") from column name like "TE_status"
  prefix <- sub("_status$", "", status_col)
  expected_rows <- c(paste0(prefix), paste0("non-", prefix))
  expected_cols <- c("sig", "not_sig")
  
  # Build matrix
  mat <- CPG_TSS_status_df %>%
    group_by(across(all_of(status_col)), EPI_sig_3) %>%
    tally() %>%
    pivot_wider(
      names_from = EPI_sig_3,
      values_from = n,
      values_fill = list(n = 0)
    ) %>%
    column_to_rownames(var = status_col) %>%
    as.matrix()
  
  # Fill missing expected rows
  for (r in setdiff(expected_rows, rownames(mat))) {
    mat <- rbind(mat, setNames(rep(0, length(expected_cols)), expected_cols))
    rownames(mat)[nrow(mat)] <- r
  }

  # Fill missing expected columns
  for (c in setdiff(expected_cols, colnames(mat))) {
    mat <- cbind(mat, setNames(rep(0, nrow(mat)), c))
  }

  # Order
  mat <- mat[expected_rows, expected_cols, drop = FALSE]
})

# Set names so you can easily refer to each status
names(EPI_3_status_matrices) <- status_columns


odds_ratio_results_EPI_3 <- map(EPI_3_status_matrices, function(mat) {
  if (!all(dim(mat) == c(2, 2)) || any(!is.finite(mat)) || sum(mat) == 0 || any(rowSums(mat) == 0) || any(colSums(mat) == 0)) {
    return(NULL)
  }
  
  result <- epitools::oddsratio(mat, method = "wald")
  
  or <- result$measure[2, "estimate"]
  lower <- result$measure[2, "lower"]
  upper <- result$measure[2, "upper"]
  
  pval_chisq <- if("chi.square" %in% colnames(result$p.value) && nrow(result$p.value) >= 2) {
    result$p.value[2, "chi.square"]
  } else {
    NA_real_
  }
  
  list(
    odds_ratio = or,
    lower_ci = lower,
    upper_ci = upper,
    chi_sq_p = pval_chisq
  )
})
EPI_24_status_matrices <- map(status_columns, function(status_col) {
  # Extract prefix (e.g., "TE", "SINE") from column name like "TE_status"
  prefix <- sub("_status$", "", status_col)
  expected_rows <- c(paste0(prefix), paste0("non-", prefix))
  expected_cols <- c("sig", "not_sig")
  
  # Build matrix
  mat <- CPG_TSS_status_df %>%
    group_by(across(all_of(status_col)), EPI_sig_24) %>%
    tally() %>%
    pivot_wider(
      names_from = EPI_sig_24,
      values_from = n,
      values_fill = list(n = 0)
    ) %>%
    column_to_rownames(var = status_col) %>%
    as.matrix()
  
  # Fill missing expected rows
  for (r in setdiff(expected_rows, rownames(mat))) {
    mat <- rbind(mat, setNames(rep(0, length(expected_cols)), expected_cols))
    rownames(mat)[nrow(mat)] <- r
  }

  # Fill missing expected columns
  for (c in setdiff(expected_cols, colnames(mat))) {
    mat <- cbind(mat, setNames(rep(0, nrow(mat)), c))
  }

  # Order
  mat <- mat[expected_rows, expected_cols, drop = FALSE]
})

# Set names so you can easily refer to each status
names(EPI_24_status_matrices) <- status_columns


odds_ratio_results_EPI_24 <- map(EPI_24_status_matrices, function(mat) {
  if (!all(dim(mat) == c(2, 2)) || any(!is.finite(mat)) || sum(mat) == 0 || any(rowSums(mat) == 0) || any(colSums(mat) == 0)) {
    return(NULL)
  }
  
  result <- epitools::oddsratio(mat, method = "wald")
  
  or <- result$measure[2, "estimate"]
  lower <- result$measure[2, "lower"]
  upper <- result$measure[2, "upper"]
  
  pval_chisq <- if("chi.square" %in% colnames(result$p.value) && nrow(result$p.value) >= 2) {
    result$p.value[2, "chi.square"]
  } else {
    NA_real_
  }
  
  list(
    odds_ratio = or,
    lower_ci = lower,
    upper_ci = upper,
    chi_sq_p = pval_chisq
  )
})

DNR

status_columns <- c("CpG_status", "TSS_status")
DNR_3_status_matrices <- map(status_columns, function(status_col) {
  # Extract prefix (e.g., "TE", "SINE") from column name like "TE_status"
  prefix <- sub("_status$", "", status_col)
  expected_rows <- c(paste0(prefix), paste0("non-", prefix))
  expected_cols <- c("sig", "not_sig")
  
  # Build matrix
  mat <- CPG_TSS_status_df %>%
    group_by(across(all_of(status_col)), DNR_sig_3) %>%
    tally() %>%
    pivot_wider(
      names_from = DNR_sig_3,
      values_from = n,
      values_fill = list(n = 0)
    ) %>%
    column_to_rownames(var = status_col) %>%
    as.matrix()
  
  # Fill missing expected rows
  for (r in setdiff(expected_rows, rownames(mat))) {
    mat <- rbind(mat, setNames(rep(0, length(expected_cols)), expected_cols))
    rownames(mat)[nrow(mat)] <- r
  }

  # Fill missing expected columns
  for (c in setdiff(expected_cols, colnames(mat))) {
    mat <- cbind(mat, setNames(rep(0, nrow(mat)), c))
  }

  # Order
  mat <- mat[expected_rows, expected_cols, drop = FALSE]
})

# Set names so you can easily refer to each status
names(DNR_3_status_matrices) <- status_columns


odds_ratio_results_DNR_3 <- map(DNR_3_status_matrices, function(mat) {
  if (!all(dim(mat) == c(2, 2)) || any(!is.finite(mat)) || sum(mat) == 0 || any(rowSums(mat) == 0) || any(colSums(mat) == 0)) {
    return(NULL)
  }
  
  result <- epitools::oddsratio(mat, method = "wald")
  
  or <- result$measure[2, "estimate"]
  lower <- result$measure[2, "lower"]
  upper <- result$measure[2, "upper"]
  
  pval_chisq <- if("chi.square" %in% colnames(result$p.value) && nrow(result$p.value) >= 2) {
    result$p.value[2, "chi.square"]
  } else {
    NA_real_
  }
  
  list(
    odds_ratio = or,
    lower_ci = lower,
    upper_ci = upper,
    chi_sq_p = pval_chisq
  )
})
DNR_24_status_matrices <- map(status_columns, function(status_col) {
  # Extract prefix (e.g., "TE", "SINE") from column name like "TE_status"
  prefix <- sub("_status$", "", status_col)
  expected_rows <- c(paste0(prefix), paste0("non-", prefix))
  expected_cols <- c("sig", "not_sig")
  
  # Build matrix
  mat <- CPG_TSS_status_df %>%
    group_by(across(all_of(status_col)), DNR_sig_24) %>%
    tally() %>%
    pivot_wider(
      names_from = DNR_sig_24,
      values_from = n,
      values_fill = list(n = 0)
    ) %>%
    column_to_rownames(var = status_col) %>%
    as.matrix()
  
  # Fill missing expected rows
  for (r in setdiff(expected_rows, rownames(mat))) {
    mat <- rbind(mat, setNames(rep(0, length(expected_cols)), expected_cols))
    rownames(mat)[nrow(mat)] <- r
  }

  # Fill missing expected columns
  for (c in setdiff(expected_cols, colnames(mat))) {
    mat <- cbind(mat, setNames(rep(0, nrow(mat)), c))
  }

  # Order
  mat <- mat[expected_rows, expected_cols, drop = FALSE]
})

# Set names so you can easily refer to each status
names(DNR_24_status_matrices) <- status_columns


odds_ratio_results_DNR_24 <- map(DNR_24_status_matrices, function(mat) {
  if (!all(dim(mat) == c(2, 2)) || any(!is.finite(mat)) || sum(mat) == 0 || any(rowSums(mat) == 0) || any(colSums(mat) == 0)) {
    return(NULL)
  }
  
  result <- epitools::oddsratio(mat, method = "wald")
  
  or <- result$measure[2, "estimate"]
  lower <- result$measure[2, "lower"]
  upper <- result$measure[2, "upper"]
  
  pval_chisq <- if("chi.square" %in% colnames(result$p.value) && nrow(result$p.value) >= 2) {
    result$p.value[2, "chi.square"]
  } else {
    NA_real_
  }
  
  list(
    odds_ratio = or,
    lower_ci = lower,
    upper_ci = upper,
    chi_sq_p = pval_chisq
  )
})

MTX

status_columns <- c("CpG_status", "TSS_status")
MTX_3_status_matrices <- map(status_columns, function(status_col) {
  # Extract prefix (e.g., "TE", "SINE") from column name like "TE_status"
  prefix <- sub("_status$", "", status_col)
  expected_rows <- c(paste0(prefix), paste0("non-", prefix))
  expected_cols <- c("sig", "not_sig")
  
  # Build matrix
  mat <- CPG_TSS_status_df %>%
    group_by(across(all_of(status_col)), MTX_sig_3) %>%
    tally() %>%
    pivot_wider(
      names_from = MTX_sig_3,
      values_from = n,
      values_fill = list(n = 0)
    ) %>%
    column_to_rownames(var = status_col) %>%
    as.matrix()
  
  # Fill missing expected rows
  for (r in setdiff(expected_rows, rownames(mat))) {
    mat <- rbind(mat, setNames(rep(0, length(expected_cols)), expected_cols))
    rownames(mat)[nrow(mat)] <- r
  }

  # Fill missing expected columns
  for (c in setdiff(expected_cols, colnames(mat))) {
    mat <- cbind(mat, setNames(rep(0, nrow(mat)), c))
  }

  # Order
  mat <- mat[expected_rows, expected_cols, drop = FALSE]
})

# Set names so you can easily refer to each status
names(MTX_3_status_matrices) <- status_columns


odds_ratio_results_MTX_3 <- map(MTX_3_status_matrices, function(mat) {
  if (!all(dim(mat) == c(2, 2)) || any(!is.finite(mat)) || sum(mat) == 0 || any(rowSums(mat) == 0) || any(colSums(mat) == 0)) {
    return(NULL)
  }
  
  result <- epitools::oddsratio(mat, method = "wald")
  
  or <- result$measure[2, "estimate"]
  lower <- result$measure[2, "lower"]
  upper <- result$measure[2, "upper"]
  
  pval_chisq <- if("chi.square" %in% colnames(result$p.value) && nrow(result$p.value) >= 2) {
    result$p.value[2, "chi.square"]
  } else {
    NA_real_
  }
  
  list(
    odds_ratio = or,
    lower_ci = lower,
    upper_ci = upper,
    chi_sq_p = pval_chisq
  )
})
MTX_24_status_matrices <- map(status_columns, function(status_col) {
  # Extract prefix (e.g., "TE", "SINE") from column name like "TE_status"
  prefix <- sub("_status$", "", status_col)
  expected_rows <- c(paste0(prefix), paste0("non-", prefix))
  expected_cols <- c("sig", "not_sig")
  
  # Build matrix
  mat <- CPG_TSS_status_df %>%
    group_by(across(all_of(status_col)), MTX_sig_24) %>%
    tally() %>%
    pivot_wider(
      names_from = MTX_sig_24,
      values_from = n,
      values_fill = list(n = 0)
    ) %>%
    column_to_rownames(var = status_col) %>%
    as.matrix()
  
  # Fill missing expected rows
  for (r in setdiff(expected_rows, rownames(mat))) {
    mat <- rbind(mat, setNames(rep(0, length(expected_cols)), expected_cols))
    rownames(mat)[nrow(mat)] <- r
  }

  # Fill missing expected columns
  for (c in setdiff(expected_cols, colnames(mat))) {
    mat <- cbind(mat, setNames(rep(0, nrow(mat)), c))
  }

  # Order
  mat <- mat[expected_rows, expected_cols, drop = FALSE]
})

# Set names so you can easily refer to each status
names(MTX_24_status_matrices) <- status_columns


odds_ratio_results_MTX_24 <- map(MTX_24_status_matrices, function(mat) {
  if (!all(dim(mat) == c(2, 2)) || any(!is.finite(mat)) || sum(mat) == 0 || any(rowSums(mat) == 0) || any(colSums(mat) == 0)) {
    return(NULL)
  }
  
  result <- epitools::oddsratio(mat, method = "wald")
  
  or <- result$measure[2, "estimate"]
  lower <- result$measure[2, "lower"]
  upper <- result$measure[2, "upper"]
  
  pval_chisq <- if("chi.square" %in% colnames(result$p.value) && nrow(result$p.value) >= 2) {
    result$p.value[2, "chi.square"]
  } else {
    NA_real_
  }
  
  list(
    odds_ratio = or,
    lower_ci = lower,
    upper_ci = upper,
    chi_sq_p = pval_chisq
  )
})

odds ratio results

col_fun_OR = colorRamp2(c(0,1,1.5,5), c("blueviolet","white","lightgreen","green3" ))

combined_df <- bind_rows(
  map_dfr(odds_ratio_results_DOX_3, ~as.data.frame(.x), .id = "status") %>% mutate(source = "DOX_3hr"),
  map_dfr(odds_ratio_results_DOX_24, ~as.data.frame(.x), .id = "status") %>% mutate(source = "DOX_24hr"),
  map_dfr(odds_ratio_results_EPI_3, ~as.data.frame(.x), .id = "status") %>% mutate(source = "EPI_3hr"),
  map_dfr(odds_ratio_results_EPI_24, ~as.data.frame(.x), .id = "status") %>% mutate(source = "EPI_24hr"),
  map_dfr(odds_ratio_results_DNR_3, ~as.data.frame(.x), .id = "status") %>% mutate(source = "DNR_3hr"),
  map_dfr(odds_ratio_results_DNR_24, ~as.data.frame(.x), .id = "status") %>% mutate(source = "DNR_24hr"),
  map_dfr(odds_ratio_results_MTX_3, ~as.data.frame(.x), .id = "status") %>% mutate(source = "MTX_3hr"),
  map_dfr(odds_ratio_results_MTX_24, ~as.data.frame(.x), .id = "status") %>% mutate(source = "MTX_24hr"))


sig_mat_OR <-combined_df %>% 
  dplyr::select( status,source,chi_sq_p) %>%
  group_by(source) %>%
  mutate(rank_val=rank(chi_sq_p, ties.method = "first")) %>%
  mutate(BH_correction= p.adjust(chi_sq_p,method= "BH")) %>% 
  pivot_wider(., id_cols = status, names_from = source, values_from = BH_correction) %>% 
  column_to_rownames("status") %>% 
  as.matrix()

# saveRDS(combined_df,"data/Final_four_data/re_analysis/OR_results_TSS_CpG_df_1bp_ALLtrt.RDS")
combined_df %>% 
 dplyr::select(status, source, odds_ratio) %>%
  group_by(source) %>%
  pivot_wider(., id_cols = status, names_from = source, values_from = odds_ratio) %>% 
  column_to_rownames("status") %>% 
  as.matrix() %>% 
  ComplexHeatmap::Heatmap(. ,col = col_fun_OR, 
                          cluster_rows=FALSE, 
                          cluster_columns=FALSE, 
                          column_names_side = "top", 
                          column_names_rot = 45,
                          # na_col = "black",
                          cell_fun = function(j, i, x, y, width, height, fill) {if (!is.na(sig_mat_OR[i, j]) && sig_mat_OR[i, j] < 0.05  && .[i, j] > 1) {
            grid.text("*", x, y, gp = gpar(fontsize = 20))}})

note, this is corrected for multiple testing across TSS and CUG tests only in each motif cluster.


sessionInfo()
R version 4.4.2 (2024-10-31 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 26100)

Matrix products: default


locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

time zone: America/Chicago
tzcode source: internal

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] circlize_0.4.16                         
 [2] epitools_0.5-10.1                       
 [3] ggrepel_0.9.6                           
 [4] plyranges_1.26.0                        
 [5] ggsignif_0.6.4                          
 [6] genomation_1.38.0                       
 [7] smplot2_0.2.5                           
 [8] eulerr_7.0.2                            
 [9] biomaRt_2.62.1                          
[10] devtools_2.4.5                          
[11] usethis_3.1.0                           
[12] ggpubr_0.6.0                            
[13] BiocParallel_1.40.0                     
[14] scales_1.3.0                            
[15] VennDiagram_1.7.3                       
[16] futile.logger_1.4.3                     
[17] gridExtra_2.3                           
[18] ggfortify_0.4.17                        
[19] edgeR_4.4.2                             
[20] limma_3.62.2                            
[21] rtracklayer_1.66.0                      
[22] org.Hs.eg.db_3.20.0                     
[23] TxDb.Hsapiens.UCSC.hg38.knownGene_3.20.0
[24] GenomicFeatures_1.58.0                  
[25] AnnotationDbi_1.68.0                    
[26] Biobase_2.66.0                          
[27] GenomicRanges_1.58.0                    
[28] GenomeInfoDb_1.42.3                     
[29] IRanges_2.40.1                          
[30] S4Vectors_0.44.0                        
[31] BiocGenerics_0.52.0                     
[32] ChIPseeker_1.42.1                       
[33] RColorBrewer_1.1-3                      
[34] broom_1.0.7                             
[35] kableExtra_1.4.0                        
[36] lubridate_1.9.4                         
[37] forcats_1.0.0                           
[38] stringr_1.5.1                           
[39] dplyr_1.1.4                             
[40] purrr_1.0.4                             
[41] readr_2.1.5                             
[42] tidyr_1.3.1                             
[43] tibble_3.2.1                            
[44] ggplot2_3.5.1                           
[45] tidyverse_2.0.0                         
[46] workflowr_1.7.1                         

loaded via a namespace (and not attached):
  [1] fs_1.6.5                               
  [2] matrixStats_1.5.0                      
  [3] bitops_1.0-9                           
  [4] enrichplot_1.26.6                      
  [5] doParallel_1.0.17                      
  [6] httr_1.4.7                             
  [7] profvis_0.4.0                          
  [8] tools_4.4.2                            
  [9] backports_1.5.0                        
 [10] utf8_1.2.6                             
 [11] R6_2.6.1                               
 [12] lazyeval_0.2.2                         
 [13] GetoptLong_1.0.5                       
 [14] urlchecker_1.0.1                       
 [15] withr_3.0.2                            
 [16] prettyunits_1.2.0                      
 [17] cli_3.6.4                              
 [18] formatR_1.14                           
 [19] Cairo_1.6-2                            
 [20] sass_0.4.9                             
 [21] Rsamtools_2.22.0                       
 [22] systemfonts_1.2.1                      
 [23] yulab.utils_0.2.0                      
 [24] foreign_0.8-88                         
 [25] DOSE_4.0.1                             
 [26] svglite_2.1.3                          
 [27] R.utils_2.13.0                         
 [28] sessioninfo_1.2.3                      
 [29] plotrix_3.8-4                          
 [30] BSgenome_1.74.0                        
 [31] pwr_1.3-0                              
 [32] impute_1.80.0                          
 [33] rstudioapi_0.17.1                      
 [34] RSQLite_2.3.9                          
 [35] shape_1.4.6.1                          
 [36] generics_0.1.4                         
 [37] gridGraphics_0.5-1                     
 [38] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
 [39] BiocIO_1.16.0                          
 [40] vroom_1.6.5                            
 [41] gtools_3.9.5                           
 [42] car_3.1-3                              
 [43] GO.db_3.20.0                           
 [44] Matrix_1.7-3                           
 [45] abind_1.4-8                            
 [46] R.methodsS3_1.8.2                      
 [47] lifecycle_1.0.4                        
 [48] whisker_0.4.1                          
 [49] yaml_2.3.10                            
 [50] carData_3.0-5                          
 [51] SummarizedExperiment_1.36.0            
 [52] gplots_3.2.0                           
 [53] qvalue_2.38.0                          
 [54] SparseArray_1.6.2                      
 [55] BiocFileCache_2.14.0                   
 [56] blob_1.2.4                             
 [57] promises_1.3.2                         
 [58] crayon_1.5.3                           
 [59] miniUI_0.1.2                           
 [60] ggtangle_0.0.6                         
 [61] lattice_0.22-6                         
 [62] cowplot_1.1.3                          
 [63] KEGGREST_1.46.0                        
 [64] magick_2.8.7                           
 [65] ComplexHeatmap_2.22.0                  
 [66] pillar_1.10.2                          
 [67] knitr_1.50                             
 [68] fgsea_1.32.2                           
 [69] rjson_0.2.23                           
 [70] boot_1.3-31                            
 [71] codetools_0.2-20                       
 [72] fastmatch_1.1-6                        
 [73] glue_1.8.0                             
 [74] getPass_0.2-4                          
 [75] ggfun_0.1.8                            
 [76] data.table_1.17.0                      
 [77] remotes_2.5.0                          
 [78] vctrs_0.6.5                            
 [79] png_0.1-8                              
 [80] treeio_1.30.0                          
 [81] gtable_0.3.6                           
 [82] cachem_1.1.0                           
 [83] xfun_0.51                              
 [84] S4Arrays_1.6.0                         
 [85] mime_0.12                              
 [86] iterators_1.0.14                       
 [87] statmod_1.5.0                          
 [88] ellipsis_0.3.2                         
 [89] nlme_3.1-167                           
 [90] ggtree_3.14.0                          
 [91] bit64_4.6.0-1                          
 [92] filelock_1.0.3                         
 [93] progress_1.2.3                         
 [94] rprojroot_2.0.4                        
 [95] bslib_0.9.0                            
 [96] rpart_4.1.24                           
 [97] KernSmooth_2.23-26                     
 [98] Hmisc_5.2-2                            
 [99] colorspace_2.1-1                       
[100] DBI_1.2.3                              
[101] seqPattern_1.38.0                      
[102] nnet_7.3-20                            
[103] tidyselect_1.2.1                       
[104] processx_3.8.6                         
[105] bit_4.6.0                              
[106] compiler_4.4.2                         
[107] curl_6.2.1                             
[108] git2r_0.35.0                           
[109] httr2_1.1.2                            
[110] htmlTable_2.4.3                        
[111] xml2_1.3.7                             
[112] DelayedArray_0.32.0                    
[113] checkmate_2.3.2                        
[114] caTools_1.18.3                         
[115] callr_3.7.6                            
[116] rappdirs_0.3.3                         
[117] digest_0.6.37                          
[118] rmarkdown_2.29                         
[119] XVector_0.46.0                         
[120] base64enc_0.1-3                        
[121] htmltools_0.5.8.1                      
[122] pkgconfig_2.0.3                        
[123] MatrixGenerics_1.18.1                  
[124] dbplyr_2.5.0                           
[125] fastmap_1.2.0                          
[126] GlobalOptions_0.1.2                    
[127] rlang_1.1.5                            
[128] htmlwidgets_1.6.4                      
[129] UCSC.utils_1.2.0                       
[130] shiny_1.10.0                           
[131] farver_2.1.2                           
[132] jquerylib_0.1.4                        
[133] zoo_1.8-13                             
[134] jsonlite_1.9.1                         
[135] GOSemSim_2.32.0                        
[136] R.oo_1.27.1                            
[137] RCurl_1.98-1.16                        
[138] magrittr_2.0.3                         
[139] Formula_1.2-5                          
[140] GenomeInfoDbData_1.2.13                
[141] ggplotify_0.1.2                        
[142] patchwork_1.3.0                        
[143] munsell_0.5.1                          
[144] Rcpp_1.0.14                            
[145] ape_5.8-1                              
[146] stringi_1.8.4                          
[147] zlibbioc_1.52.0                        
[148] plyr_1.8.9                             
[149] pkgbuild_1.4.8                         
[150] parallel_4.4.2                         
[151] Biostrings_2.74.1                      
[152] splines_4.4.2                          
[153] hms_1.1.3                              
[154] locfit_1.5-9.12                        
[155] ps_1.9.0                               
[156] igraph_2.1.4                           
[157] reshape2_1.4.4                         
[158] pkgload_1.4.0                          
[159] futile.options_1.0.1                   
[160] XML_3.99-0.18                          
[161] evaluate_1.0.3                         
[162] lambda.r_1.2.4                         
[163] foreach_1.5.2                          
[164] tzdb_0.4.0                             
[165] httpuv_1.6.15                          
[166] clue_0.3-66                            
[167] gridBase_0.4-7                         
[168] xtable_1.8-4                           
[169] restfulr_0.0.15                        
[170] tidytree_0.4.6                         
[171] rstatix_0.7.2                          
[172] later_1.4.1                            
[173] viridisLite_0.4.2                      
[174] aplot_0.2.6                            
[175] memoise_2.0.1                          
[176] GenomicAlignments_1.42.0               
[177] cluster_2.1.8.1                        
[178] timechange_0.3.0