Last updated: 2024-02-06

Checks: 7 0

Knit directory: Cardiotoxicity/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230109) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version b0e5bcc. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/variance_values by gene.png
    Ignored:    data/41588_2018_171_MOESM3_ESMeQTL_ST2_for paper.csv
    Ignored:    data/Arr_GWAS.txt
    Ignored:    data/Arr_geneset.RDS
    Ignored:    data/BC_cell_lines.csv
    Ignored:    data/BurridgeDOXTOX.RDS
    Ignored:    data/CADGWASgene_table.csv
    Ignored:    data/CAD_geneset.RDS
    Ignored:    data/CALIMA_Data/
    Ignored:    data/CMD04_75DRCviability.csv
    Ignored:    data/CMD04_87DRCviability.csv
    Ignored:    data/CMD05_75DRCviability.csv
    Ignored:    data/CMD05_87DRCviability.csv
    Ignored:    data/Clamp_Summary.csv
    Ignored:    data/Cormotif_24_k1-5_raw.RDS
    Ignored:    data/Counts_RNA_ERMatthews.txt
    Ignored:    data/DAgostres24.RDS
    Ignored:    data/DAtable1.csv
    Ignored:    data/DDEMresp_list.csv
    Ignored:    data/DDE_reQTL.txt
    Ignored:    data/DDEresp_list.csv
    Ignored:    data/DEG-GO/
    Ignored:    data/DEG_cormotif.RDS
    Ignored:    data/DF_Plate_Peak.csv
    Ignored:    data/DRC48hoursdata.csv
    Ignored:    data/Da24counts.txt
    Ignored:    data/Dx24counts.txt
    Ignored:    data/Dx_reQTL_specific.txt
    Ignored:    data/EPIstorelist24.RDS
    Ignored:    data/Ep24counts.txt
    Ignored:    data/FC_necela.RDS
    Ignored:    data/FC_necela_names.RDS
    Ignored:    data/Full_LD_rep.csv
    Ignored:    data/GOIsig.csv
    Ignored:    data/GOplots.R
    Ignored:    data/GTEX_setsimple.csv
    Ignored:    data/GTEX_sig24.RDS
    Ignored:    data/GTEx_gene_list.csv
    Ignored:    data/HFGWASgene_table.csv
    Ignored:    data/HF_geneset.RDS
    Ignored:    data/Heart_Left_Ventricle.v8.egenes.txt
    Ignored:    data/Heatmap_mat.RDS
    Ignored:    data/Heatmap_sig.RDS
    Ignored:    data/Hf_GWAS.txt
    Ignored:    data/K_cluster
    Ignored:    data/K_cluster_kisthree.csv
    Ignored:    data/K_cluster_kistwo.csv
    Ignored:    data/Knowles_log2cpm_real.RDS
    Ignored:    data/Knowles_variation_data.RDS
    Ignored:    data/Knowles_variation_data_conc.RDS
    Ignored:    data/Knowlesvarlist.RDS
    Ignored:    data/LD50_05via.csv
    Ignored:    data/LDH48hoursdata.csv
    Ignored:    data/Mt24counts.txt
    Ignored:    data/NoRespDEG_final.csv
    Ignored:    data/RINsamplelist.txt
    Ignored:    data/RNA_seq_trial.RDS
    Ignored:    data/Schneider_GWAS.txt
    Ignored:    data/Seonane2019supp1.txt
    Ignored:    data/Sup_replicate_values.csv
    Ignored:    data/TMMnormed_x.RDS
    Ignored:    data/TOP2Bi-24hoursGO_analysis.csv
    Ignored:    data/TR24counts.txt
    Ignored:    data/TableS10.csv
    Ignored:    data/TableS11.csv
    Ignored:    data/TableS9.csv
    Ignored:    data/Top2_expression.RDS
    Ignored:    data/Top2biresp_cluster24h.csv
    Ignored:    data/Var_test_list.RDS
    Ignored:    data/Var_test_list24.RDS
    Ignored:    data/Var_test_list24alt.RDS
    Ignored:    data/Var_test_list3.RDS
    Ignored:    data/Vargenes.RDS
    Ignored:    data/Viabilitylistfull.csv
    Ignored:    data/allexpressedgenes.txt
    Ignored:    data/allfinal3hour.RDS
    Ignored:    data/allgenes.txt
    Ignored:    data/allmatrix.RDS
    Ignored:    data/allmymatrix.RDS
    Ignored:    data/annotation_data_frame.RDS
    Ignored:    data/averageviabilitytable.RDS
    Ignored:    data/averageviabilitytable.csv
    Ignored:    data/avgLD50.RDS
    Ignored:    data/avg_LD50.RDS
    Ignored:    data/avg_via_table.csv
    Ignored:    data/backGL.txt
    Ignored:    data/burr_genes.RDS
    Ignored:    data/calcium_data.RDS
    Ignored:    data/clamp_summary.RDS
    Ignored:    data/cormotif_3hk1-8.RDS
    Ignored:    data/cormotif_initalK5.RDS
    Ignored:    data/cormotif_initialK5.RDS
    Ignored:    data/cormotif_initialall.RDS
    Ignored:    data/cormotifprobs.csv
    Ignored:    data/counts24hours.RDS
    Ignored:    data/cpmcount.RDS
    Ignored:    data/cpmnorm_counts.csv
    Ignored:    data/crispr_genes.csv
    Ignored:    data/ctnnt_results.txt
    Ignored:    data/cvd_GWAS.txt
    Ignored:    data/dat_cpm.RDS
    Ignored:    data/data_outline.txt
    Ignored:    data/drug_noveh1.csv
    Ignored:    data/efit2.RDS
    Ignored:    data/efit2_final.RDS
    Ignored:    data/efit2results.RDS
    Ignored:    data/ensembl_backup.RDS
    Ignored:    data/ensgtotal.txt
    Ignored:    data/filcpm_counts.RDS
    Ignored:    data/filenameonly.txt
    Ignored:    data/filtered_cpm_counts.csv
    Ignored:    data/filtered_raw_counts.csv
    Ignored:    data/filtermatrix_x.RDS
    Ignored:    data/folder_05top/
    Ignored:    data/framefun24.RDS
    Ignored:    data/geneDoxonlyQTL.csv
    Ignored:    data/gene_corr_df.RDS
    Ignored:    data/gene_corr_frame.RDS
    Ignored:    data/gene_prob_tran3h.RDS
    Ignored:    data/gene_probabilityk5.RDS
    Ignored:    data/geneset_24.RDS
    Ignored:    data/gostresTop2bi_ER.RDS
    Ignored:    data/gostresTop2bi_LR
    Ignored:    data/gostresTop2bi_LR.RDS
    Ignored:    data/gostresTop2bi_TI.RDS
    Ignored:    data/gostrescoNR
    Ignored:    data/gtex/
    Ignored:    data/heartgenes.csv
    Ignored:    data/highly_var_genelist.RDS
    Ignored:    data/hsa_kegg_anno.RDS
    Ignored:    data/individualDRCfile.RDS
    Ignored:    data/individual_DRC48.RDS
    Ignored:    data/individual_LDH48.RDS
    Ignored:    data/indv_noveh1.csv
    Ignored:    data/kegglistDEG.RDS
    Ignored:    data/kegglistDEG24.RDS
    Ignored:    data/kegglistDEG3.RDS
    Ignored:    data/knowfig4.csv
    Ignored:    data/knowfig5.csv
    Ignored:    data/label_list.RDS
    Ignored:    data/ld50_table.csv
    Ignored:    data/mean_vardrug1.csv
    Ignored:    data/mean_varframe.csv
    Ignored:    data/mymatrix.RDS
    Ignored:    data/new_ld50avg.RDS
    Ignored:    data/nonresponse_cluster24h.csv
    Ignored:    data/norm_LDH.csv
    Ignored:    data/norm_counts.csv
    Ignored:    data/old_sets/
    Ignored:    data/organized_drugframe.csv
    Ignored:    data/pca_all_anno.csv
    Ignored:    data/plan2plot.png
    Ignored:    data/plot_intv_list.RDS
    Ignored:    data/plot_list_DRC.RDS
    Ignored:    data/qval24hr.RDS
    Ignored:    data/qval3hr.RDS
    Ignored:    data/qvalueEPItemp.RDS
    Ignored:    data/raw_counts.csv
    Ignored:    data/response_cluster24h.csv
    Ignored:    data/sampsettrz.RDS
    Ignored:    data/schneider_closest_output.RDS
    Ignored:    data/sigVDA24.txt
    Ignored:    data/sigVDA3.txt
    Ignored:    data/sigVDX24.txt
    Ignored:    data/sigVDX3.txt
    Ignored:    data/sigVEP24.txt
    Ignored:    data/sigVEP3.txt
    Ignored:    data/sigVMT24.txt
    Ignored:    data/sigVMT3.txt
    Ignored:    data/sigVTR24.txt
    Ignored:    data/sigVTR3.txt
    Ignored:    data/siglist.RDS
    Ignored:    data/siglist_final.RDS
    Ignored:    data/siglist_old.RDS
    Ignored:    data/slope_table.csv
    Ignored:    data/supp10_24hlist.RDS
    Ignored:    data/supp10_3hlist.RDS
    Ignored:    data/supp_normLDH48.RDS
    Ignored:    data/supp_pca_all_anno.RDS
    Ignored:    data/supp_viadata.csv
    Ignored:    data/table3a.omar
    Ignored:    data/test_run_sample_list.txt
    Ignored:    data/testlist.txt
    Ignored:    data/toplistall.RDS
    Ignored:    data/trtonly_24h_genes.RDS
    Ignored:    data/trtonly_3h_genes.RDS
    Ignored:    data/tvl24hour.txt
    Ignored:    data/tvl24hourw.txt
    Ignored:    data/venn_code.R
    Ignored:    data/viability.RDS

Untracked files:
    Untracked:  .RDataTmp
    Untracked:  .RDataTmp1
    Untracked:  .RDataTmp2
    Untracked:  .RDataTmp3
    Untracked:  3hr all.pdf
    Untracked:  Code_files_list.csv
    Untracked:  Data_files_list.csv
    Untracked:  Doxorubicin_vehicle_3_24.csv
    Untracked:  Doxtoplist.csv
    Untracked:  EPIqvalue_analysis.Rmd
    Untracked:  Final.sup.pdf
    Untracked:  GWAS_list_of_interest.xlsx
    Untracked:  KEGGpathwaylist.R
    Untracked:  NA
    Untracked:  OmicNavigator_learn.R
    Untracked:  SNP_egenes_allfiles.RDS
    Untracked:  SNP_frame_pdf
    Untracked:  SNP_frame_pdf.pdf
    Untracked:  SigDoxtoplist.csv
    Untracked:  analysis/DRC_viability_check.Rmd
    Untracked:  analysis/New_code_dec-23.R
    Untracked:  analysis/cellcycle_kegg_genes.R
    Untracked:  analysis/ciFIT.R
    Untracked:  analysis/export_to_excel.R
    Untracked:  analysis/featureCountsPLAY.R
    Untracked:  cleanupfiles_script.R
    Untracked:  code/biomart_gene_names.R
    Untracked:  code/constantcode.R
    Untracked:  code/corMotifcustom.R
    Untracked:  code/cpm_boxplot.R
    Untracked:  code/extracting_ggplot_data.R
    Untracked:  code/movingfilesto_ppl.R
    Untracked:  code/pearson_extract_func.R
    Untracked:  code/pearson_tox_extract.R
    Untracked:  code/plot1C.fun.R
    Untracked:  code/spearman_extract_func.R
    Untracked:  code/venndiagramcolor_control.R
    Untracked:  cormotif_p.post.list_4.csv
    Untracked:  figS1024h.pdf
    Untracked:  final.pdf
    Untracked:  individual-legenddark2.png
    Untracked:  installed_old.rda
    Untracked:  listoftranscripts
    Untracked:  motif_ER.txt
    Untracked:  motif_LR.txt
    Untracked:  motif_NR.txt
    Untracked:  motif_TI.txt
    Untracked:  output/ABHD8_dif_values.RDS
    Untracked:  output/C3orf18_dif_values.RDS
    Untracked:  output/Cardiotox_dif_values.RDS
    Untracked:  output/DNR_DEGlist.csv
    Untracked:  output/DNRvenn.RDS
    Untracked:  output/DOX_DEGlist.csv
    Untracked:  output/DOX_de_goi.csv
    Untracked:  output/DOXvenn.RDS
    Untracked:  output/EEF1B2_dif_values.RDS
    Untracked:  output/EEIG1_dif_values.RDS
    Untracked:  output/EPI_DEGlist.csv
    Untracked:  output/EPIvenn.RDS
    Untracked:  output/ESGN_rds.RDS
    Untracked:  output/FC_necela.RDS
    Untracked:  output/FC_necela_names.RDS
    Untracked:  output/FRS2_dif_values.RDS
    Untracked:  output/Figures/
    Untracked:  output/GTEXv8_gene_median_tpm.RDS
    Untracked:  output/GTEXv8_gene_tpm_heart_left_ventricle.RDS
    Untracked:  output/HDDC2_dif_values.RDS
    Untracked:  output/HER2_gene.RDS
    Untracked:  output/KEGGcellcyclegenes.RDS
    Untracked:  output/Knowles_S13.csv
    Untracked:  output/Knowles_log2cpm.csv
    Untracked:  output/Knowles_supp13.csv
    Untracked:  output/LD50tox_table.RDS
    Untracked:  output/MTX_DEGlist.csv
    Untracked:  output/MTXvenn.RDS
    Untracked:  output/PEX16_dif_values.RDS
    Untracked:  output/RASIP1_dif_values.RDS
    Untracked:  output/RMI1_dif_values.RDS
    Untracked:  output/RSID_QTL_list_full.txt
    Untracked:  output/SETA_analysis_reyes.RDS
    Untracked:  output/SGWAS_top50_order.csv
    Untracked:  output/SLC27A1_dif_values.RDS
    Untracked:  output/SLC28A3_dif_values.RDS
    Untracked:  output/SNP_egenes_allfiles.RDS
    Untracked:  output/SNP_list_ID.RDS
    Untracked:  output/SNP_list_full.txt
    Untracked:  output/SNP_supp.RDS
    Untracked:  output/TGFBR3L_dif_values.RDS
    Untracked:  output/TNS2_dif_values.RDS
    Untracked:  output/TOP_50SNPreffile.csv
    Untracked:  output/TRZ_DEGlist.csv
    Untracked:  output/TableS8.csv
    Untracked:  output/Volcanoplot_10
    Untracked:  output/Volcanoplot_10.RDS
    Untracked:  output/ZNF740_dif_values.RDS
    Untracked:  output/allfinal_sup10.RDS
    Untracked:  output/counts_v8_heart_left_ventricle_gct.RDS
    Untracked:  output/crisprfoldchange.RDS
    Untracked:  output/endocytosisgenes.csv
    Untracked:  output/expre7k.csv
    Untracked:  output/expressed_egenes_by_RSID.csv
    Untracked:  output/gene_corr_fig9.RDS
    Untracked:  output/genes.RDS
    Untracked:  output/legend_b.RDS
    Untracked:  output/motif_ERrep.RDS
    Untracked:  output/motif_LRrep.RDS
    Untracked:  output/motif_NRrep.RDS
    Untracked:  output/motif_TI_rep.RDS
    Untracked:  output/near_genes_SNP1.RDS
    Untracked:  output/necela_list_test.RDS
    Untracked:  output/necela_val_genes.RDS
    Untracked:  output/output-old/
    Untracked:  output/rank24genes.csv
    Untracked:  output/rank3genes.csv
    Untracked:  output/sequencinginformationforsupp.csv
    Untracked:  output/sequencinginformationforsupp.prn
    Untracked:  output/sigVDA24.txt
    Untracked:  output/sigVDA3.txt
    Untracked:  output/sigVDX24.txt
    Untracked:  output/sigVDX3.txt
    Untracked:  output/sigVEP24.txt
    Untracked:  output/sigVEP3.txt
    Untracked:  output/sigVMT24.txt
    Untracked:  output/sigVMT3.txt
    Untracked:  output/sigVTR24.txt
    Untracked:  output/sigVTR3.txt
    Untracked:  output/supplementary_motif_list_GO.RDS
    Untracked:  output/test_biomart_run.RDS
    Untracked:  output/toptablebydrug.RDS
    Untracked:  output/trop_knowles_fun.csv
    Untracked:  output/tvl24hour.txt
    Untracked:  output/x_counts.RDS
    Untracked:  reneebasecode.R

Unstaged changes:
    Modified:   analysis/DRC_analysis.Rmd
    Modified:   analysis/GTEx_genes.Rmd
    Deleted:    analysis/Knowles2019.Rmd
    Modified:   output/daplot.RDS
    Modified:   output/dxplot.RDS
    Modified:   output/epplot.RDS
    Modified:   output/mtplot.RDS
    Modified:   output/plan2plot.png
    Modified:   output/trplot.RDS
    Modified:   output/veplot.RDS

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Figure3.Rmd) and HTML (docs/Figure3.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd b0e5bcc reneeisnowhere 2024-02-06 updates to Venn code
html 2315be3 reneeisnowhere 2024-02-06 Build site.
Rmd be9b3ad reneeisnowhere 2024-02-06 updates to figure layout
html a745db3 reneeisnowhere 2023-09-27 Build site.
Rmd 21485ae reneeisnowhere 2023-09-27 updates to links and cleanup code
html 4bb0b80 reneeisnowhere 2023-07-28 Build site.
Rmd 974fcde reneeisnowhere 2023-07-28 new figures update
html c40aced reneeisnowhere 2023-07-26 Build site.
Rmd 58c7965 reneeisnowhere 2023-07-26 updating figures
html 513ca48 reneeisnowhere 2023-07-26 Build site.
Rmd 7a6a0df reneeisnowhere 2023-07-26 updates in figures
html 27d1916 reneeisnowhere 2023-07-21 Build site.
Rmd d042c3e reneeisnowhere 2023-07-21 update from fig 4 to fig 3
html 759904c reneeisnowhere 2023-07-07 Build site.
Rmd 42b14d1 reneeisnowhere 2023-07-07 changing figure orientation
html f0b9480 reneeisnowhere 2023-07-07 Build site.
Rmd 0c07b8e reneeisnowhere 2023-07-07 update exports of plots
html 6de33dc reneeisnowhere 2023-07-06 Build site.
Rmd c1236c9 reneeisnowhere 2023-07-06 adding fig 3 updates
html a9ef9f3 reneeisnowhere 2023-06-27 Build site.
Rmd 7e94f87 reneeisnowhere 2023-06-27 adding figures
Rmd 4d0f4ee reneeisnowhere 2023-06-27 first update

library(car)
library(tidyverse)
library(tinytex)
library(BiocGenerics)
library(drc)
library(cowplot)
library(ggsignif)
library(RColorBrewer)
library(broom)
library(edgeR)
library(data.table)

library(broom)
library(limma)
library(corrplot)
library(ggVennDiagram)
library(ComplexHeatmap)
library(gridtext)
library(paletteer)

Figure 3: TOP2i induce global gene expression changes over 24 hours.

A. PCA of log2 cpm

drug_pal_fact <- c("#8B006D","#DF707E","#F1B72B", "#3386DD","#707031","#41B333")

level_order2 <- c('75','87','77','79','78','71')

label_list <- readRDS("data/label_list.RDS")
list2env(label_list,envir =.GlobalEnv)
<environment: R_GlobalEnv>
label <- (interaction(substring(drug, 0, 2), indv, time))
x <- readRDS("data/filtermatrix_x.RDS")

x <- calcNormFactors(x, method = "TMM")
normalized_lib_size <- x$samples$lib.size * x$samples$norm.factors
dat_cpm <- cpm(x$counts, lib.size = normalized_lib_size, log=TRUE)

colnames(dat_cpm) <- label

calc_pca <- function(x) {
  # Performs principal components analysis with prcomp
  # x: a sample-by-gene numeric matrix
  prcomp(x, scale. = TRUE, retx = TRUE)
}
time <- rep((rep(c("3h", "24h"), c(6,6))), 6) 

time <- ordered(time, levels =c("3h", "24h"))

anno <- readRDS("data/annotation_data_frame.RDS")
cpm_per_sample <- cbind(anno, t(dat_cpm)) 
pca_all <- calc_pca(t(dat_cpm))
pca_all_anno <- data.frame(anno, pca_all$x)


PCA_plot_group <- pca_all_anno %>%
  mutate(drug =case_match(drug, "Daunorubicin"~"DNR",
                        "Doxorubicin"~"DOX",
                        "Epirubicin"~"EPI",
                        "Mitoxantrone"~"MTX",
                        "Trastuzumab"~"TRZ",
                        "Vehicle"~"VEH", .default = drug)) %>%
  ggplot(.,aes(x = PC1, y = PC2, col=drug, shape=time))+
  geom_point(size= 5)+
  scale_color_manual(values=drug_pal_fact, name="treatment")+
   ggrepel::geom_text_repel(label=indv)+
   ggtitle(expression("PCA of log"[2]*"(cpm)"))+
  theme_bw()+
  guides( size =4)+
  labs(y = "PC 2 (15.76%)", x ="PC 1 (29.06%)")+
  theme(plot.title=element_text(size= 14,hjust = 0.5),
        axis.title = element_text(size = 12, color = "black"))
PCA_plot_group

Version Author Date
2315be3 reneeisnowhere 2024-02-06
a745db3 reneeisnowhere 2023-09-27
4bb0b80 reneeisnowhere 2023-07-28
c40aced reneeisnowhere 2023-07-26
513ca48 reneeisnowhere 2023-07-26
27d1916 reneeisnowhere 2023-07-21

More information on overall RNA-seq analysis can be found at this link

toplistall <- readRDS("data/toplistall.RDS")
siglist <- readRDS("data/siglist_final.RDS")
list2env(siglist, envir = .GlobalEnv)
<environment: R_GlobalEnv>
cpmcounts <- readRDS("data/cpmcount.RDS")

B. Pairwise correlation of drug responses in pairwise analysis

efit2 <- readRDS("data/efit2_final.RDS")
FCmatrix <- subset(efit2$coefficients)

colnames(FCmatrix) <-
  c(
    "DNR\n3h",
    "DOX\n3h",
    "EPI\n3h",
    "MTX\n3h",
    "TRZ\n3h",
    "DNR\n24h",
    "DOX\n24h",
    "EPI\n24h",
    "MTX\n24h",
    "TRZ\n24h"
  )


mat_col <-
  data.frame(
    time = c(rep("3 hours", 5), rep("24 hours", 5)),
    class = (c(
      "AC", "AC", "AC", "nAC", "nAC", "AC", "AC", "AC", "nAC", "nAC"
    )),
    TOP2i = c(rep("yes", 4), "no", rep("yes", 4), "no")
  )
rownames(mat_col) <- colnames(FCmatrix)

mat_colors <-
  list(
    time = c("pink", "chocolate4"),
    class = c("yellow1", "lightgreen"),
    TOP2i = c("darkgreen", "goldenrod")
  )
names(mat_colors$time) <- unique(mat_col$time)
names(mat_colors$class) <- unique(mat_col$class)
names(mat_colors$TOP2i) <- unique(mat_col$TOP2i)
corrFC <- cor(FCmatrix)
ComplexHeatmap::pheatmap(
  corrFC,
  display_numbers = TRUE,
  number_format = "%.2f",
  main = ("Correlation of all expressed FC values, n=14084"),
  annotation_col = mat_col,
  annotation_colors = mat_colors,
  fontsize = 10,
  fontsize_row = 8,
  angle_col = "0",
  treeheight_row = 25,
  fontsize_col = 8,
  treeheight_col = 20
)

Version Author Date
2315be3 reneeisnowhere 2024-02-06
HMcorr <- ComplexHeatmap::pheatmap(
  corrFC,
  display_numbers = TRUE,
  number_format = "%.2f",
  annotation_col = mat_col,
  annotation_colors = mat_colors,
  fontsize = 10,
  fontsize_row = 8,
  angle_col = "0",
  treeheight_row = 25,
  fontsize_col = 8,
  treeheight_col = 20
)

Additional code and information can be found here

C. Venn Diagram of 3 hour DEGs

total3 <- list(sigVDA3$ENTREZID,sigVDX3$ENTREZID, sigVEP3$ENTREZID,sigVMT3$ENTREZID)
totalin_common3 <- c(sigVDA3$SYMBOL,sigVDX3$SYMBOL, sigVEP3$SYMBOL,sigVMT3$SYMBOL)


fig3hrvenn <- ggVennDiagram::ggVennDiagram(total3,
              category.names = c("DNR    \nn = 532\n",
                                 "DOX\n  n = 19\n",
                                 "EPI\n   n = 210\n",
                                 " MTX\n   n = 75\n"),
              show_intersect = FALSE,
              set_color = "black",
              category_size = c(5,5,5,5),
              label = "count",
              label_percent_digit = 1,
              label_size = 4,
              label_alpha = 0,
              caption_size = 4,
              label_color = "black",
              edge_lty = "solid", set_size = 4.5)+
  scale_x_continuous(expand = expansion(mult = .3))+
  scale_y_continuous(expand = expansion(mult = .2))+
  # scale_color_fish_d(option = "Bodianus_pulchellus", direction = -1)+
  scale_fill_distiller(palette="Spectral", direction = -1, limits=c(0,4500))+
  labs(title = "3 hour",
       caption = paste("n =", length(unique(totalin_common3)),"genes\n "))+
  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5, vjust =1),
        plot.caption=element_text(size=12))
fig3hrvenn 

Version Author Date
2315be3 reneeisnowhere 2024-02-06

D. Venn Diagram of 24 hour DEGs

total24 <-
  list(sigVDA24$ENTREZID,
       sigVDX24$ENTREZID,
       sigVEP24$ENTREZID,
       sigVMT24$ENTREZID)
in_common24 <-
  c(sigVDA24$ENTREZID,
    sigVDX24$ENTREZID,
    sigVEP24$ENTREZID,
    sigVMT24$ENTREZID)


fig24hrvenn <- ggVennDiagram::ggVennDiagram(
  total24,
  category.names = c(
    "DNR \nn = 7017  \n ",
    "DOX\n n = 6645\n",
    "EPI\n n = 6328\n",
    " MTX\n   n = 1115\n "
  ),
  show_intersect = FALSE,
  set_color = "black",
  category_size = c(5, 5, 5, 5),
  label = "count",
  label_percent_digit = 1,
  label_size = 4,
  label_alpha = 0,
  label_color = "black",
  edge_lty = "solid",
  set_size = 4
) +
  scale_x_continuous(expand = expansion(mult = .3)) +
  scale_y_continuous(expand = expansion(mult = .2)) +
  # scale_color_paletteer_d(palette = "fishualize::Bodianus_pulchellus") +
  scale_fill_distiller(palette = "Spectral", direction = -1) +
  labs(title = "24 hour",
       caption = paste("n =", length(unique(in_common24)), "genes\n ")) +
  
  theme(
    plot.title = element_text(
      size = rel(1.6),
      hjust = 0.5,
      vjust = 1
    ),
    plot.caption = element_text(size = 12)
  )
fig24hrvenn

Version Author Date
2315be3 reneeisnowhere 2024-02-06

More information can be found here.

E. 3 hour top enriched KEGG pathways

kegglistDEG3 <- readRDS("data/kegglistDEG3.RDS")
list2env(kegglistDEG3, envir = .GlobalEnv)
<environment: R_GlobalEnv>
keggDEGlong3 <- list(
  "DOX" = DXdeg3k,
  "EPI" = EPdeg3k,
  "DNR" = DAdeg3k,
  "MTX" = MTdeg3k,
  "Anthracyclines" = DDEdeg3k,
  "TOP2Bi" = DDEMdeg3k
)
col_funkegg = circlize::colorRamp2(c(0, 31), c("white", "darkred"))
keggtable3 <-
  data.table::rbindlist(keggDEGlong3,
                        idcol = "deg",
                        fill = TRUE,
                        use.names = TRUE) #%>% complete(deg = names(keglistDEG3))

kegg_sig_mat3 <- keggtable3 %>%
  dplyr::select(deg, p_value, term_name) %>%
  add_row(deg = "TOP2i",
          p_value = 1,
          term_name = "Herpes simplex virus 1 infection") %>%
  mutate(
    term_name = case_match(
      term_name,
      "Cell cycle" ~ "Cell\ncycle",
      "p53 signaling pathway" ~ "p53\nsig.\npath.",
      "Base excision repair" ~ "Base\nexcision\nrepair",
      "Herpes simplex virus 1 infection" ~ "HSV1\ninfection"    ,
      "DNA replication" ~ "DNA\nrep.",
      .default = term_name
    )
  ) %>%
  pivot_wider(
    id_cols = everything(),
    names_from = "term_name",
    values_from = "p_value",
    values_fill = list(p_value = 1)
  ) %>%
  column_to_rownames('deg') %>%
  as.matrix()#

kegg_mat3 <- keggtable3 %>%
  dplyr::select(deg, log_val, term_name) %>%
  add_row(deg = "TOP2i",
          log_val = NA,
          term_name = "Herpes simplex virus 1 infection") %>%
  mutate(
    term_name = case_match(
      term_name,
      "p53 signaling pathway" ~ "p53\nsig.\npath.",
      "Base excision repair" ~ "Base\nexcision\nrepair",
      "Herpes simplex virus 1 infection" ~ "HSV1\ninfection"    ,
      "DNA replication" ~ "DNA\nrep.",
      .default = term_name
    )
  ) %>%
  pivot_wider(id_cols = everything(),
              names_from = "term_name",
              values_from = "log_val") %>%
  column_to_rownames('deg') %>%
  as.matrix()#

draw(
  Heatmap(
    kegg_mat3,
    column_title = "KEGG Pathway -log 10(p value)",
    name = "-log10 (p value)",
    cluster_rows = FALSE,
    cluster_columns = FALSE,
    column_names_rot = 0,
    column_names_centered = TRUE,
    row_names_max_width = max_text_width(rownames(kegg_mat3),
                                         gp = gpar(fontsize = 10)),
    col = col_funkegg,
    na_col = "lightyellow",
    column_labels = gt_render(c("HSV-1 infx.",
                                "p53\nsig.\npath.")),
    cell_fun = function(j, i, x, y, width, height, fill) {
      if (kegg_sig_mat3[i, j] < 0.05)
        grid.text("*", x, y, gp = gpar(fontsize = 20))
    }
  )
)

Version Author Date
2315be3 reneeisnowhere 2024-02-06

More information can be found here.

F. 24 hour top enriched KEGG Pathways

library(grid)
kegglistDEG24 <- readRDS("data/kegglistDEG24.RDS")
list2env(kegglistDEG24, envir = .GlobalEnv)
<environment: R_GlobalEnv>
keggDEGlong <- list(
  "DOX" = DXdegk,
  "EPI" = EPdegk,
  "DNR" = DAdegk,
  "MTX" = MTdegk,
  "Anthracyclines" = DDEdegk,
  "TOP2i" = DDEMdegk
)
col_funkegg = circlize::colorRamp2(c(0, 31), c("white", "darkred"))
keggtable <- data.table::rbindlist(keggDEGlong, idcol = "deg")

kegg_sig_mat <- keggtable %>%
  dplyr::select(deg, p_value, term_name) %>%
  mutate(
    term_name = case_match(
      term_name,
      "Cell cycle" ~ "Cell\ncycle",
      "p53 signaling pathway" ~ "p53\nsig.\npath.",
      "Base excision repair" ~ "Base\nexcision\nrepair",
      "DNA replication" ~ "DNA\nrep.",
      .default = term_name
    )
  ) %>%
  pivot_wider(
    id_cols = everything(),
    names_from = "term_name",
    values_from = "p_value",
    values_fill = list(p_value = 1)
  ) %>%
  column_to_rownames('deg') %>%
  as.matrix()#

kegg_mat <- keggtable %>%
  dplyr::select(deg, log_val, term_name) %>%
  mutate(
    term_name = case_match(
      term_name,
      "Cell cycle" ~ "Cell\ncycle",
      "p53 signaling pathway" ~ "p53\nsig.\npath.",
      "Base excision repair" ~ "Base\nexcision\nrepair",
      "DNA replication" ~ "DNA\nrep.",
      .default = term_name
    )
  ) %>%
  pivot_wider(id_cols = everything(),
              names_from = "term_name",
              values_from = "log_val") %>%
  column_to_rownames('deg') %>%
  as.matrix()#

Heatmap(
  kegg_mat,
  column_title = "KEGG Pathway -log p values",
  name = "-log10 (p value)",
  cluster_rows = FALSE,
  cluster_columns = FALSE,
  column_names_rot = 0,
  column_names_centered = TRUE,
  row_names_max_width = max_text_width(rownames(kegg_mat),
                                       gp = gpar(fontsize = 10)),
  col = col_funkegg,
  na_col = "lightyellow",
  column_labels = gt_render(c(
    "p53\nsig.\npath.",
    "B.E.R.",
    "Cell\ncycle",
    "DNA\nrep."
  )),
  cell_fun = function(j, i, x, y, width, height, fill) {
    if (kegg_sig_mat[i, j] < 0.05)
      grid.text("*", x, y, gp = gpar(fontsize = 20))
  }
)

Version Author Date
2315be3 reneeisnowhere 2024-02-06

Further KEGG analysis information and code may be found here


sessionInfo()
R version 4.3.1 (2023-06-16 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19045)

Matrix products: default


locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

time zone: America/Chicago
tzcode source: internal

attached base packages:
[1] grid      stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] paletteer_1.6.0       gridtext_0.1.5        ComplexHeatmap_2.16.0
 [4] ggVennDiagram_1.5.0   corrplot_0.92         data.table_1.14.8    
 [7] edgeR_3.42.4          limma_3.56.2          broom_1.0.5          
[10] RColorBrewer_1.1-3    ggsignif_0.6.4        cowplot_1.1.1        
[13] drc_3.0-1             MASS_7.3-60           BiocGenerics_0.46.0  
[16] tinytex_0.48          lubridate_1.9.3       forcats_1.0.0        
[19] stringr_1.5.0         dplyr_1.1.3           purrr_1.0.2          
[22] readr_2.1.4           tidyr_1.3.0           tibble_3.2.1         
[25] ggplot2_3.4.4         tidyverse_2.0.0       car_3.1-2            
[28] carData_3.0-5         workflowr_1.7.1      

loaded via a namespace (and not attached):
 [1] rematch2_2.1.2      sandwich_3.1-0      rlang_1.1.2        
 [4] magrittr_2.0.3      clue_0.3-65         GetoptLong_1.0.5   
 [7] git2r_0.32.0        multcomp_1.4-25     matrixStats_1.1.0  
[10] compiler_4.3.1      getPass_0.2-2       png_0.1-8          
[13] callr_3.7.3         vctrs_0.6.4         shape_1.4.6        
[16] pkgconfig_2.0.3     crayon_1.5.2        fastmap_1.1.1      
[19] magick_2.8.1        backports_1.4.1     labeling_0.4.3     
[22] utf8_1.2.4          promises_1.2.1      rmarkdown_2.25     
[25] markdown_1.12       tzdb_0.4.0          ps_1.7.5           
[28] xfun_0.41           cachem_1.0.8        jsonlite_1.8.7     
[31] highr_0.10          later_1.3.1         cluster_2.1.4      
[34] parallel_4.3.1      R6_2.5.1            bslib_0.6.1        
[37] stringi_1.7.12      jquerylib_0.1.4     Rcpp_1.0.11        
[40] iterators_1.0.14    knitr_1.45          zoo_1.8-12         
[43] IRanges_2.34.1      httpuv_1.6.12       Matrix_1.6-2       
[46] splines_4.3.1       timechange_0.2.0    tidyselect_1.2.0   
[49] rstudioapi_0.15.0   abind_1.4-5         yaml_2.3.7         
[52] doParallel_1.0.17   codetools_0.2-19    processx_3.8.2     
[55] lattice_0.22-5      withr_3.0.0         evaluate_0.23      
[58] survival_3.5-7      xml2_1.3.5          circlize_0.4.15    
[61] pillar_1.9.0        whisker_0.4.1       foreach_1.5.2      
[64] stats4_4.3.1        generics_0.1.3      rprojroot_2.0.4    
[67] hms_1.1.3           S4Vectors_0.38.2    commonmark_1.9.1   
[70] munsell_0.5.0       scales_1.3.0        gtools_3.9.4       
[73] glue_1.6.2          tools_4.3.1         locfit_1.5-9.8     
[76] fs_1.6.3            mvtnorm_1.2-3       plotrix_3.8-4      
[79] colorspace_2.1-0    cli_3.6.1           fansi_1.0.5        
[82] gtable_0.3.4        sass_0.4.7          digest_0.6.33      
[85] ggrepel_0.9.4       TH.data_1.1-2       farver_2.1.1       
[88] rjson_0.2.21        htmltools_0.5.7     lifecycle_1.0.4    
[91] httr_1.4.7          GlobalOptions_0.1.2